
Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji was born on 13 April 953 in
Baghdad, Iraq and died in about 1029. His importance the field of mathematics is
debated by historians and mathematicians. Some consider that he only reworked
previous ideas, while others see him as the first person to use arithmetic style
operations with algebra as opposed to geometrical operations.

In his work, Al-Fakhri, Al-Karaji succeeded in defining x, and 

and gave rules for finding the products of any pair without reference to geometry. He

was close to giving the rule 

but just failed because he did not define .

In his discussion and demonstration of this work Al-Karaji used a form of
mathematical induction where he proved a result using the previous result and
noted that this process could continue indefinitely. As we will see in this chapter,
this is not a full proof by induction, but it does highlight one of the major
principles.

Al-Karaji used this form of induction in his work on the binomial theorem,
binomial coefficients and Pascal’s triangle. The table shown is one that Al-Karaji
used, and is actually Pascal’s triangle in its side.

He also worked on the sums of the first n natural numbers, the squares of the first
n natural numbers and the cubes of these
numbers, which we introduced in Chapter 6.
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18.1 Introduction to mathematical
induction

Mathematical induction is a method of mathematical proof. Most proofs presented in
this book are direct proofs – that is proofs where one step leads directly from another to
the required result. However, there are a number of methods of indirect proof including
proof by contradiction, proof by contrapositive and proof by mathematical induction. In
this curriculum, we only consider proof by induction for positive integers.

Mathematical induction is based on the idea of proving the next step to be true if the
previous one is true. If the result is true for an initial value, then it is true for all values.
This is demonstrated by the following metaphor.

Consider a ladder that is infinite in one direction. We want to prove that the ladder is
completely safe, that is each rung on the ladder is sound.
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k
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First, test the bottom rung on the ladder and check that it is sound. Then assume that a
rung on the ladder, somewhere further up, is also sound. Call this the kth rung. Using
this assumption, show that the next rung up, the rung, is also sound if the
assumption is true. Since we know the first rung is sound, we can now say the second
one is sound. As the second one is sound, the third one is sound and so on. So the
whole ladder is safe.

1k � 1 2 th

Example

Prove that by mathematical 

induction.

We cannot use the standard results for and here as we are being

asked to prove it by mathematical induction.

1 For 

Since the result is true for n � 1.LHS � RHS,

 � �2

  � �2 � 3 � 5

  � 112 2 1�1 2 � 311 22 � 511 2

RHS � 111 � 1 2 11 � 2 2 LHS � a
1
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3r˛
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2 � 5r � n˛1n � 1 2 1n � 2 2  ∀n H ��

Example

Prove by mathematical induction.

Remembering the meaning of this notation, we know that means that

we need to prove it is true for all positive integers, i.e. n � 1, n H �.

∀ n H ��
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n

r�1
r �

n˛1n � 1 2

2
  ∀ n H ��
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1 Prove the result is true for 
It is important to show this very clearly (even though it is often obvious).

Since the result is true for 

2 Assume the result is true for 

i.e. 

3 Now consider the result for We want to show that

4 For 

which is the required form.

5 So the result is true for when true for Since the result is
true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
1k � 1 2 1k � 2 2

2

 �
k˛1k � 1 2 � 21k � 1 2

2
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2
�
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2
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2
� 1k � 1 2

 a
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r�1
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k

r�1
r � 1k � 1 2

n � k � 1,

a
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1k � 1 2 1k � 1 � 1 2

2
�
1k � 1 2 1k � 2 2

2

n � k � 1.

a
k

r�1
r �

k˛1k � 1 2

2

n � k, k 7 1, k H �,

n � 1.LHS � RHS,

  � 1 � 1

RHS �
112 2

2
 LHS � a

1

r�1
r  

n � 1.
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Adding on the
term.1k � 1 2th

We are using the
assumption here.

This communication is
identical for virtually all
induction proofs. It is
worth learning its form.

Method for mathematical induction

1. Prove the result is true for an initial value (normally ).
2. Assume the result to be true for another value, stating this result.
3. Consider the case for writing down the goal – the required form.
4. Using the assumption, show that the result is then true for 
5. Communicate why this proves the result using mathematical induction.

n � k � 1.
n � k � 1,

n � k, k 7 1,
n � 1
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2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

4 For 

which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � 1k � 1 2 1k � 2 2 1k � 1 2

 � 1k � 1 2 3k˛

2 � k � 2 4

 � 1k � 1 2 3k˛1k � 2 2 � 31k � 1 2 � 5 4

 � k˛1k � 1 2 1k � 2 2 � 31k � 1 22 � 51k � 1 2

 � a
k

r�1
13r˛
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a
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Adding on the
term.1k � 1 2 th

We are using the
assumption here.

Example

Prove that by mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 
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4 For 

which is the required form.

5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1
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Adding on the
term.1k � 1 2th

We are using the
assumption here.

Example

Prove that by mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 
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which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,
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It can be seen from these examples that sigma notation is very useful when proving a
result by induction.

Example

Prove that 

It is simpler to express the LHS using sigma notation. Hence the result becomes

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

�
1
3

 1k � 1 2 1k � 2 2 1k � 6 2

a
k�1

r�1
r˛1r � 3 2 �

1
3

 1k � 1 2 1k � 1 � 1 2 1k � 1 � 5 2

n � k � 1.

a
k

r�1
r˛1r � 3 2 �

1
3

 k˛1k � 1 2 1k � 5 2

n � k,

n � 1.LHS � RHS,

 � 4

 �
1
3

 12 2 16 2 � 4

 RHS �
1
3

 11 2 11 � 1 2 11 � 5 2 LHS � a
1

r�1
11 2 11 � 3 2

n � 1,

a
n

r�1
r˛1r � 3 2 �

1
3

 n˛1n � 1 2 1n � 5 2 .

1.4 � 2.5 � 3.6 � p � n˛1n � 3 2 �
1
3

 n˛1n � 1 2 1n � 5 2  ∀n H ��.
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Prove these results by mathematical induction.
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4 For 
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Proof of the binomial theorem for positive integer
powers

Prove the binomial theorem, i.e. 

1 For 

Since the result is true for 

2 Assume the result to be true for 

3 Consider We want to show that 

4 For 
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n � 1.LHS � RHS,

 � x � y

 � ¢1
0
≤x˛

1
˛y˛ 0 � ¢1

1
≤x˛

0
˛y˛

1 � x � y
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1

r�0
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18.2 Proving some well-known results
So far we have concentrated on proving results that involve sigma notation. However,
mathematical induction can be used to prove results from a variety of mathematical
spheres. These include results from calculus, complex numbers and matrices as well as
algebra.

In earlier chapters, it was stated that proofs would be provided using mathematical
induction for the binomial theorem and de Moivre’s theorem. In this syllabus,
knowledge of the proof of de Moivre’s theorem is expected but not for the binomial
theorem.

Proof of de Moivre’s theorem using mathematical
induction
This was proved in Chapter 17 using calculus, but this method must also be known.

Prove de Moivre’s theorem for all positive integers, i.e. 

1 For 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the result is true for when true for Since the result is true for

it is true by mathematical induction.

This can be extended to negative integers by considering where m is a positive
integer.

n � �m

∀n H ��n � 1,

n � k.n � k � 1

 � cos1k � 1 2u � i sin1k � 1 2u
 � cos1u � ku 2 � i˛1sin1ku � u 2 2

 � cos u cos ku � sin u sin ku � i˛1sin ku cos u � sin u cos ku 2
 � cos u cos ku � i sin ku cos u � i sin u cos ku � i˛

2 sin u sin ku

 � 1cos u � i sin u 2 1cos ku � i sin ku 2
 � 1cos u � i sin u 2 1cos u � i sin u 2 k
1cos u � i sin u 2 k�1

n � k � 1,

1cos u � i sin u 2 k�1 � cos1k � 1 2u � i sin1k � 1 2u

n � k � 1.

1cos u � i sin u 2 k � cos ku � i sin kun � k,

n � 1.LHS � RHS,

 � cos u � i sin u � cos u � i sin u
 RHS � cos11u 2 � i sin11u 2 LHS � 1cos u � i sin u 21

n � 1,

� i sin nu1cos u � i sin u 2n � cos nu
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18

19

20 �4 � 0 � 6 � p � 1n � 2 2 1n � 3 2 �
1
3

 n˛1n˛

2 � 3n � 16 2

1.2 � 2.3 � 3.4 � p � n˛1n � 1 2 �
1
3

 n˛1n � 1 2 1n � 2 2

3 � 6 � 11 � p � 1n˛

2 � 2 2 �
1
6

 n˛12n˛

2 � 3n � 13 2

Substituting for k in
the result.

1k � 1 2

We are multiplying the result for

by

to get the result for n � k � 1.

1cos u � i sin u 2n � k

Using the assumption.
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˛y˛ r � p � ¢k

k
≤x˛ 0˛y˛ k� a
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r�0
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r
≤x˛ k�r
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We can now use the result that (which was proved in

Chapter 6).

So the general term becomes 

The expansion is therefore

which is the required form.

5 So the result is true for when true for Since the result is true for

it is true by mathematical induction.

We also use mathematical induction to prove divisibility. This is demonstrated in the
example below.

∀n H ��n � 1,

n � k.n � k � 1

� a
k�1

r�0
¢k � 1

r
≤ x˛

k�1�r
˛y ̨r

� ¢k � 1
k
≤ xy ̨k � ¢k � 1
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k�1
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0
≤ x˛

k�1 � ¢k � 1
1
≤ x˛

k
˛y˛
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2
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k�1
˛y˛

2 � p � ¢k � 1
r
≤1x˛

k�1�r
˛y ̨r 2 � p

� ¢k � 1
r
≤ x˛

k�1�r
˛y ̨r

B¢k
r
≤ � ¢ k

r � 1
≤R1x˛

k�1�r
˛y ̨r 2

¢n
r
≤ � ¢ n

r � 1
≤ � ¢n � 1

r
≤
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Example

Prove that is divisible by 8 for 

This can be restated as 

1 For 

As 8 is a factor of 16, or the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

Since we can say that which is the required
form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

t � 9 p � 719p � 7 2 H �,

 � 819p � 7 2

 � 9.8p � 56

 � 9.8p � 63 � 7

 � 918p � 7 2 � 7

 � 9132k � 7 � 7 2 � 7

 � 9.32k � 7

 � 3232k � 7

321k�12 � 7 � 32k�2 � 7

n � k � 1,

321k�12 � 7 � 8t, t H �.n � k � 1.

32k � 7 � 8p, p H �.n � k,

n � 1.16 � 8 � 2,

 � 16

 32n � 7 � 32 � 7

n � 1,

32n � 7 � 8p, p H �.

n H ��.32n � 7

This allows us to 
use the assumption.

Example

Prove that for all using mathematical induction.

1 Notice here that the initial value is not 

For 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

We know that and so 

Hence which is the required form.
5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n � 3, n H �n � 3,
n � k.n � k � 1

2k�1
7 2k � 3

2k � 2k � 2 7 2k � 32k � 2 7 3, ∀k � 3

 � 2k � 2k � 2

 7 212k � 1 2

� 2.2k2k�1

n � k � 1,

 1 2k�1
7 2k � 3

 2k�1
7 21k � 1 2 � 1n � k � 1.

2k
7 2k � 1.n � k, k 7 3,

n � 3.LHS 7 RHS,

 � 7 � 8

 RHS � 213 2 � 1 LHS � 23

n � 3,

n � 1.

n � 3, n H �2n
7 2n � 1

Using the assumption.

Induction can also be used to prove results from other spheres of mathematics such as
calculus and matrices.

There are other algebraic results that we can prove using mathematical induction, as
exemplified below.

Example

Prove that 

1 For 

We know the LHS is equal to 1 as the gradient of is 1. However, we
should prove this by differentiation by first principles as part of a proof.
Let 

 � 1

 �
h
h

�
x � h � x

h

f1x � h 2 � f1x 2

h

f1x 2 � x

y � x

 � 1

 � x˛

0 � 1

 RHS � 11 2x˛

1�1 LHS �
d
dx

 1x˛

1 2

n � 1,

d
dx

 1x˛

n 2 � nx˛

n�1, ∀n H ��.
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Hence 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � x˛

k11 � k 2

 � x˛

k � kx˛

k

 � 1.x˛

k � x.kx˛

k�1

�
d
dx

 1x.x˛

k 2
d
dx

 1x˛

k�1 2

n � k � 1,

d
dx

 1x˛

k�1 2 � 1k � 1 2x˛

k.n � k � 1.

d
dx

 1x˛

k 2 � kx˛

k�1

n � k,

n � 1.LHS � RHS,

lim
hS0

 

f1x � h 2 � f1x 2

h
� 1

Using the product rule 
and the assumption.

Example

Prove that using mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

 � ¢1 �1
0 1

≤ ¢1 �1
0 1

≤k

¢1 �1
0 1

≤k�1

n � k � 1,

� ¢1 �1k � 1 2
0 1

≤ .¢1 �1
0 1

≤k�1

n � k � 1.

¢1 �1
0 1

≤k

� ¢1 �k
0 1

≤ n � k,

n � 1.LHS � RHS,

 � ¢1 �1
0 1

≤
 LHS � ¢1 �1

0 1
≤1

n � 1,

¢1 �1
0 1

≤n

� ¢1 �n
0 1

≤ ∀n H ��

RHS � ¢1 �1
0 1

≤

which is the required form.

5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � ¢1 �1k � 1 2
0 1

≤
 � ¢1 � 0 �k � 1

0 � 0 0 � 1
≤

 � ¢1 �1
0 1

≤ ¢1 �k
0 1

≤ Using the assumption.
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Prove these results using mathematical induction.

1 Prove that is divisible by 7, 

2 Prove that is divisible by 4, 

3 Prove that is divisible by 4, 

4 Prove that is divisible by 64, 

5 Prove that is divisible by 10, 

6 Prove that is divisible by 24, 

7 Prove that for 

8 Prove that for 

9 Prove that for 

10 Find the smallest integer t for which 

Hence prove by induction that for all 

11 For prove that 

12 Prove that 

13 Prove that for all positive integer

values of n.

14 For prove that

15 For prove that T ̨n � £4n
a
n

r�1
4r�1

0 1
≥, ∀n H ��.T � ¢4 t

0 1
≤,

M˛

n � §1 211 � p˛

n 2

1 � p
0

0 p˛

n 0
0 0 3n

¥, ∀n H ��.M � £1 2 0
0 p 0
0 0 3

≥,
d˛

n

dx˛

n  1sin 2x 2 � 2n�1 sin¢2x �
1n � 1 2p

2
≤,

d˛

n

dx˛

n  1e˛

px 2 � p˛

n
˛e˛

px, ∀n H ��.

A˛

n � ¢ 2n 0
2n � 1 1

≤ ∀n H ��.A � ¢2 0
1 1

≤, n 7 t.n! 7 3n

n! 7 3n.

n � 10, n H ��.2n
7 n˛

3,

n � 4, n H ��.n! 7 n˛

2,

n � 4, n H ��.n! 7 2n,

∀n H ��.n˛1n˛

2 � 1 2 13n � 2 2

∀n H ��.6n � 4

∀n H ��.9n � 8n � 1

∀n H ��.5n � 3

∀n H ��.32n � 5

∀n H ��.23n � 1

Exercise 2
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18.3 Forming and proving conjectures
For all of the examples met so far, the result to be proved was given in the question. This
is not always the case; sometimes, it is necessary to form a conjecture which can then be
proved using mathematical induction.
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Example

Form a conjecture for the sum 

In order to form the conjecture, consider the results for the first few values of n.

1
1 � 2

�
1

2 � 3
�

1
3 � 4

� p �
1

n˛1n � 1 2
.

n 1 2 3 4 5

sum
4
5

�
1
30

�
5
6

3
4

�
1
20

�
4
5

2
3

�
1
12

�
3
4

1
2

�
1
6

�
2
3

1
2

Looking at the pattern, we can make a conjecture that

We now try to prove this conjecture using mathematical induction.

This can be expressed as 

1 For 

Since the conjecture is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

 �
k˛1k � 2 2

1k � 1 2 1k � 2 2
�

1
1k � 1 2 1k � 2 2

 �
k

k � 1
�

1
1k � 1 2 1k � 2 2

 � a
k

r�1

1
r˛1r � 1 2

�
1

1k � 1 2 1k � 2 2

a
k�1

r�1

1
r˛1r � 1 2

n � k � 1,

�
k � 1
k � 2

.a
k�1

r�1

1
r˛1r � 1 2

�
k � 1

k � 1 � 1

n � k � 1.

a
k

r�1

1
r˛1r � 1 2

�
k

k � 1

n � k,

n � 1.LHS � RHS,

 �
1
2

 �
1
2

 �
1

1 � 2

 RHS �
1

1 � 1
 LHS � a

1

r�1

1
r˛1r � 1 2

n � 1,

a
n

r�1

1
r˛1r � 1 2

.

1
1 � 2

�
1

2 � 3
�

1
3 � 4

� p �
1

n˛1n � 1 2
�

n
n � 1

Using the assumption.

which is the required form.

5 So the conjecture is true for when true for Since it is

true for it is true by mathematical induction.∀ n H ��n � 1,

n � k.n � k � 1

 �
k � 1
k � 2

 �
1k � 1 22

1k � 1 2 1k � 2 2

 �
k˛

2 � 2k � 1
1k � 1 2 1k � 2 2

 �
k˛1k � 2 2 � 1

1k � 1 2 1k � 2 2

Example

Form a conjecture for the pentagonal numbers as shown below. Prove your
conjecture by mathematical nduction.

So the sequence of pentagonal numbers begins 1, 5, 12, 22, 35,

Remembering that these are formed by adding “a new layer” each time, we
can consider this as a sum,

We are trying to find a formula for this. This is an arithmetic progression and
so we can apply the formula for the sum to n terms with 

Hence 

Again, our conjecture can be expressed using sigma notation: 

1 For 

Since the conjecture is true for n � 1.LHS � RHS,

 � 1 � 1

 �
3 � 1

2
 � 3 � 2

 RHS �
3112 2 � 1

2
 LHS � a

1

r�1
3r � 2

n � 1,

�
3n˛

2 � n
2a

n

r�1
3r � 2

 �
3n˛

2 � n
2

 �
n
2

 13n � 1 2

 S˛n �
n
2

 12 � 31n � 1 2 2

a � 1, d � 3.

1 � 4 � 7 � 10 � p � 13n � 2 2

p

1 5 2212

18  Mathematical Induction
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2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

4 For 

which is the required form.

5 So the conjecture is true for when true for Since it is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
3k˛

2 � 5k � 2
2

 �
3k˛

2 � k
2

�
6k � 2

2

 �
3k˛

2 � k
2

� 3k � 1

 � a
k

r�1
3r � 2 � 31k � 1 2 � 2

a
k�1

r�1
3r � 2

n � k � 1,

 �
3k˛

2 � 5k � 2
2

 �
3k˛

2 � 6k � 3 � k � 1
2

 a
k�1

r�1
3r � 2 �

31k � 1 22 � 1k � 1 2

2

n � k � 1.

a
k

r�1
3r � 2 �

3k˛

2 � k
2

n � k,

Using the assumption.

Example

For the matrix form a conjecture for Prove your

conjecture by mathematical induction.

To form the conjecture, find the results for the first few values of n.

From this we can make a conjecture that A˛

n � ¢3n 0
0 2n≤.

 A˛

4 � ¢81 0
0 16

≤
 A˛

3 � ¢27 0
0 8

≤
 A˛

2 � ¢9 0
0 4

≤
 A � ¢3 0

0 2
≤

A˛

n, n H ��.A � ¢3 0
0 2

≤,

We can now prove this using mathematical induction.

1 For 

Since the conjecture is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the conjecture is true for when true for Since the 

conjecture is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � ¢3k�1 0
0 2k�1≤

 � ¢3.3k � 0 0 � 0
0 � 0 0 � 2.2k≤

 � ¢3 0
0 2

≤˛ ¢3k 0
0 2k≤

� ¢3 0
0 2

≤ ˛¢3 0
0 2

≤k¢3 0
0 2

≤k�1

n � k � 1,

¢3 0
0 2

≤k�1

� ¢3k�1 0
0 2k�1≤.n � k � 1.

¢3 0
0 2

≤k

� ¢3k 0
0 2k≤

n � k,

n � 1.LHS � RHS,

 � ¢3 0
0 2

≤                   � ¢3 0
0 2

≤
 LHS � ¢3 0

0 2
≤1

                  RHS � ¢31 0
0 21≤

n � 1,
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Using the assumption.

1 For the matrix form a conjecture for Prove your conjecture

using mathematical induction.

2 Form a conjecture for the sum Prove
your conjecture using mathematical induction.

3 Form a conjecture for the series suggested by the initial values of 
Prove your conjecture by mathematical

induction.

4 With an unlimited supply of 4p and 7p stamps, make a conjecture about
what values >17 of postage it is possible to create. Prove your conjecture
using mathematical induction.

5 Make a conjecture about the sum of the first n odd numbers. Prove your 
conjecture using mathematical induction.

� 9 � 13 � 17 � p .�3 � 1 � 5

5 � 8 � 11 � 14 � p  � 13n � 2 2 .

D˛

n.D � ¢1 1
0 2

≤,
Exercise 3



12 Using mathematical induction, prove that for all

positive integers. [IB May 05 P2 Q4]

13 The function f is defined by where 

a Show that 

b Let denote the result of differentiating f(x) with respect to x, 

n times. Use mathematical induction to prove that

[IB May 05 P2 Q2]

14 For prove that 

using mathematical induction. [IB May 06 P2 Q5]

15 Consider the sequence where 

and for all integers 

Given the matrix, use the principle of mathematical induction

to prove that for all integers 

[IB Nov 01 P2 Q4]

16 The matrix M is defined as 

a Find and 

b i State a conjecture for i.e. express in terms of n, where 
ii Prove this conjecture using mathematical induction.

[IB Nov 02 P2 Q1]

n H ��.M˛

nM˛

n,

M˛

4.M˛

2, M˛

3

M � ¢2 �1
1 0

≤.
n � 2.Q˛

n � ¢a˛n�1 a˛n

a˛n a˛n�1
≤

Q � ¢1 1
1 0

≤
n � 2.a˛n�1 � a˛n � a˛n�1

a˛1 � a˛2 � 15a˛n6, 51, 1, 2, 3, 5, 8, 13, p 6

T˛ n � £1�1 2n 2n � 1�1 2n 0
0 2n 0
0 0 s˛

n

≥, n H ��T � £�1 3 0
0 2 0
0 0 s

≥,
f˛

1n2 1x 2 � p˛

n�1e˛

px1p˛1x � 1 2 � n 2 , n H ��.

f˛

1n2 1x 2

f'1x 2 � e˛

px1p˛1x � 1 2 � 1 2 .

p H �.f1x 2 � e˛

px
˛1x � 1 2 ,

a
n

r�1
1r � 1 22r�1 � n˛12n 2
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1 Prove that 

2 Prove that is divisible by 5, 

3 Prove that is divisible by 133.

4 Prove, using mathematical induction, that 

5 Prove, using mathematical induction, that for 

6 Prove, using mathematical induction, that 

7 Prove that 

8 Form a conjecture for the sum 
Prove your conjecture by mathematical induction.

9 Using mathematical induction, prove that for all

positive integer values of n. [IB May 01 P2 Q4]

10 a Prove using mathematical induction that for all
positive integer values of n.

b Determine whether or not this result is true for 

[IB May 02 P2 Q3]

11 Prove, using mathematical induction, that for a positive integer n,

where [IB May 03 P2 Q3]i˛

2 � �1.1cos u � i sin u 2n � cos nu � i sin nu

n � �1.

¢2 1
0 1

≤n

� ¢2n 2n � 1
0 1

≤
d˛

n

dx˛

n  1cos x 2 � cos˛¢x �
np
2
≤,

1 � 1! � 2 � 2! � 3 � 3! � p � n � n!.

sin u � sin 3u � p � sin12n � 1 2u �
sin2 nu
sin u

, ∀ n H ��.

�
12n 2!

n!
, ∀ n H ��.2 # 6 # 10 # 14 # p # 14n � 2 2

T˛ n � ¢ 2n 0
p˛12n � 1 2 1

≤, ∀ n H ��.

T � ¢2 0
p 1

≤,
∀ n H ��.

d˛

n

dx˛

n  1xe˛

px 2 � p˛

n�1e˛

px1px � 1 2 , 

∀ n H ��, 11n�1 � 122n�1

∀ n H ��.n˛

5 � n

a
n

r�1
r˛ 4 �

1
30

 n˛1n � 1 2 12n � 1 2 13n˛

2 � 3n � 1 2 , ∀n H ��.
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6 Find an expression for the nth term of the sequence 
Prove this result to be true using mathematical induction.

7 For the sequence below where each new pattern is made by adding a new
“layer”, make a conjecture for the number of dots in the nth term of the
pattern. Prove this result to be true using mathematical induction.

5, 10, 17, 26, 37, p .

5 8 13 20 29
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