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9 Differentiation 2 – Further
Techniques

Leonhard Euler is considered
to be one of the most
important mathematicians of
all time. He was born on 15
April 1707 in Basel,
Switzerland, and died on 18
September 1783 in St
Petersburg, Russia, although
he spent much of his life in
Berlin. Euler’s mathematical
discoveries are in many
branches of mathematics
including number theory,
geometry, trigonometry,
mechanics, calculus and
analysis. Some of the 
best-known notation was
created by Euler including the
notation f(x) for a function, e
for the base of natural logs, i
for the square root of 
for pi, for summation and
many others. Euler enjoyed his
work immensely, writing in
1741, “The King calls me his
professor, and I think I am the
happiest man in the world.”
Even on his dying day he
continued to enjoy

©

�1, p

mathematics, giving a mathematics lesson to his grandchildren and doing some work on
the motion of ballons.

In Chapter 8, the basic concepts of differentiation were covered. However, the only functions
that we differentiated all reduced to functions of the form In this
chapter, we will meet and use further techniques to differentiate other functions. These
include trigonometric, exponential and logarithmic functions, functions that are given
implicitly, and functions that are the product or quotient of two (or more) functions.

y � axn � p � k.



It is clear that, as 

Now we can use differentiation by first principles to find the derivative of 

So using the above results.

Hence 

Therefore if 

What about the derivative of cos x?

Examining the graph of the derived function using the calculator, this would appear 
to be �sin x.

f1x 2 � sin x, f¿ 1x 2 � cos x.

lim
hS0

 

f1x � h 2 � f1x 2
h

� cos x

lim
hS0

 

f1x � h 2 � f1x 2
h

� 0 � cos x

 
f1x � h 2 � f1x 2

h
�

sin x1cos h � 1 2
h

�
cos x sin h

h

 � sin x1cos h � 1 2 � cos x sin h

 � sin x cos h � cos x sin h � sin x

 f1x � h 2 � f1x 2 � sin1x � h 2 � sin x

f1x � h 2 � sin1x � h 2
f1x 2 � sin x.

h S 0, 
cos h � 1

h
S 0.
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9.1 Differentiating trigonometric functions
What is the derivative of sin x?
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Using our knowledge of sketching the derived function, we know that the graph must
be of this form:

We can use a calculator to draw the derivative graph as above.

This graph looks very much like the cosine function. We now need to see if it is.

In order to prove this, there are two results that need to be investigated. First, we need

to consider what happens to for small values of h. The calculator can be used to

investigate this:

sin h
h

It is clear that, as 

Second, we also need to investigate for small values of h.
cos h � 1

h

h S 0, 
sin h

h
S 1.

When dealing with trigonometric
functions it is vital that radians
are used. This is because of the
results that we investigated
above.

In degrees, as

seen below.

lim
hS0

 

sin h
h

�� 11

So in degrees, the derivative of 
sin x is not cos x.

Therefore, for calculus, we must
always use radians.

Again, we can use using differentiation by first principles to find the derivative of 

So using the previous results.

Hence 

Therefore if f1x 2 � cos x, f¿ 1x 2 � �sin x.

lim
hS0

 

f1x � h 2 � f1x 2
h

� �sin x

lim
hS0

 

f1x � h 2 � f1x 2
h

� 0 � sin x

 
f1x � h 2 � f1x 2

h
�

cos x1cos h � 1 2
h

�
sin x sin h

h

 � cos x1cos h � 1 2 � sin x sin h

 � cos x cos h � sin x sin h � cos x

 f1x � h 2 � f1x 2 � cos1x � h 2 � cos x

f1x � h 2 � cos1x � h 2
f1x 2 � cos x.



9.2 Differentiating functions of functions
(chain rule)
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Summarizing:
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dy

dx
� �sin x

dy

dx
� cos x

y � cos xy � sin x

It is clear that these are connected (as the two functions themselves are). Starting with
sin x, repeated differentiation gives cos x, and then back to sin x. This
cycle can be remembered by

We now have the derivatives of two of the six trigonometric functions. The other four

functions are all defined in terms of sin x and cos x (remembering ) and so

this information provides the derivatives of the other four functions.

Proofs of these require the use of rules that have not yet been covered, and hence these
are to be found later in the chapter. However, the results are shown below.

tan x �
sin x
cos x

Differentiate    

S
C

�  S
�C

�sin x, �cos x

dy

dx
� �csc2 x

dy

dx
� sec x tan x

dy

dx
� �csc x cot x

dy

dx
� sec2 x

y � cot xy � sec xy � csc xy � tan x

Example

Find the derivative of 
dy

dx
� �sin x � sec x tan x

y � cos x � sec x.

Example

Find the derivative of 
dy

dx
� 8 cos x

y � 8 sin x.

Exercise  1

Find the derivative of each of these.

1 2

3 4
5 6

7 8 y � 7x � 5 sin x � sec xy � 9x2 � 4 cos x

y � �3 sec xy � 7 cot x
y � 5 cos xy � sin x � 6x2

y � sin x � csc xy � tan x � 3

We can consider this as
differentiating the bracket to
the power n and then
multiplying by the derivative
of the bracket.

This is not due to cancelling!

This is where y is a function of a function. This means that we can consider y as a function
of u and u as a function of x.

Proof
Consider where 

If is a small increase in x, then we can consider and as the corresponding
increases in u and y.

Then, as and also tend to zero.

We know from Chapter 8 that 

So 

The use of this rule is made clear in the following examples.

dy

dx
�

dy

du
#
du
dx

 � lim
duS0
¢dy
du
≤ # lim
dxS0
¢du
dx
≤

 � lim
dxS0
¢dy
du
≤ # lim
dxS0
¢du
dx
≤

 � lim
dxS0
¢dy
du

#
du
dx
≤

 
dy

dx
� lim
dxS0
¢dy
dx
≤

dydudx S 0,

dydudx

u � f1x 2 .y � g1u 2

dy

dx
�

dy

du
#
du
dx

The chain rule is a very useful and important rule for differentiation. This allows us to
differentiate composite functions. First consider 

Investigation
Consider these functions:

1 2 3

4 5 6

Using knowledge of the binomial theorem and differentiation, find the derivatives of the
above functions. Factorise the answers.

You should have noticed a pattern that will allow us to take a “shortcut”, which we
always use, when differentiating this type of function.

This is that for functions of the form 

This is a specific case of a more general rule, known as the chain rule, which can be
stated as:

dy

dx
� an1ax � b 2n�1

y � 1ax � b 2n,

y � 14 � x 23y � 14 � x 22y � 13x � 2 25
y � 13x � 2 24y � 12x � 1 23y � 12x � 1 22

y � 1ax � b 2n.



This is the formal version of the working for chain rule problems. In practice, the
substitution is often implied, as shown in the following examples. However, it is
important to be able to use the formal substitution, both for more difficult chain rule
examples and as a skill for further techniques in calculus.
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We will now apply the chain rule to other cases of a function of a function.
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Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� 1213x � 4 23.

dy

dx
� 4u3 # 3 � 12u3.

du
dx

� 3.
dy

du
� 4u3

y � u4.u � 3x � 4

y � 13x � 4 24.

Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� �1415 � 2x 26.

dy

dx
� 7u6 # �2 � �14u6.

du
dx

� �2.
dy

du
� 7u6

y � u7.u � 5 � 2x

y � 15 � 2x 27.

Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� 4 cos 4x.

dy

dx
� 4 cos u.

du
dx

� 4.
dy

du
� cos u

y � sin u.u � 4x

y � sin 4x.

Example

Differentiate 

Remember that this means 
Here there is more than one composition and so the chain rule must be extended
to:

Let and and y � u2.u � cos vv � 3x

dy

dx
�

dy

du
#
du
dv

#
dv
dx

y � 1cos 3x 22.
y � cos213x 2 .

Then and 

Hence 

Substituting back for x gives 
dy

dx
� �6 cos 3x sin 3x.

dy

dx
� �6u sin v.

dv
dx

� 3.
dy

du
� 2u, 

du
dv

� �sin v

Example

 � �3617 � 3x 25 � 2 sec2 2x

 f¿ 1x 2 � 1217 � 3x 25 # 1�3 2 � 2 sec2 2x

 f1x 2 � 217 � 3x 26 � tan 2x

This working is sufficient and
is what is usually done.

Example

 � 6x sec213x2 � 4 2 �
2

12x � 1 2 32

 f¿ 1x 2 � 3sec213x2 � 4 2 # 6x 4 � B2 # �
1
2

 12x � 1 2� 
3
2 # 2R

 f1x 2 � tan13x2 � 4 2 �
2

22x � 1
� tan13x2 � 4 2 � 212x � 1 2� 

1
2

Exercise  2

Differentiate the following:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21 y � sec 9xy � tan 6xy � �sin 

1
2

 x

y � cos 3xy � sin 4xN �
5

218 � 5p 23

P �
3

14 � 3k 22f1x 2 �
7

3 � 8x
f1x 2 �

4
5x � 4

y �
1

23x � 2
y � 326x � 5y � 12x � 9 2 53

y � 13x � 8 2 12y � 412x � 3 26y � 19 � 4x 25
f1x 2 � 17 � 2x 24f1x 2 � 15 � x 23f1x 2 � 15x � 2 24
f1x 2 � 13x � 4 22f1x 2 � 12x � 3 22f1x 2 � 1x � 4 22



During the study of exponential functions in Chapter 5, we met the natural exponential
function, The significance of this function becomes clearer now: the derivative
of is itself.ex

y � ex.
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22 23

24 25 26

27 28

29 30

9.3 Differentiating exponential and
logarithmic functions

Investigation
Draw graphs of: (a) (b) (c) (d) 

For each graph, draw the derivative graph, using a graphing calculator.

You should notice that the derivative graph is of a similar form to the original, that is, it
is an exponential graph.

For the derivative graph is just above the original.y � 3x,

y � 2xy � 3xy � 5xy � 10x

y � tan12x � 1 2y � cos ¢3x �
p

4
≤

y �
2

13x � 4 25 � sec212x 2y � 3x4 � cos3 x

y � tan214x 2y � sin3 xy � sin 5x �
4

213x � 4 25

y � csc 2x � 13x � 2 24y � 6x � cot 3x
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For the derivative graph is below the original.y � 2x,

This suggests that there is a function for which the derivative graph is identical to the
original graph and that the base of this function lies between 2 and 3. What is this base?

This question was studied for many years by many mathematicians including Leonhard
Euler, who first used the symbol e. The answer is that this base is e. Check that 
produces its own graph for the derived function on your calculator. Remember that

is an irrational number.e � 2.71828 p

y � ex

d
dx

 1ex 2 � ex

y

x

y � ax

x�

A

B

1

Gradient of the chord 

Gradient at 

Now consider two general points on the exponential curve.

A � lim
dxS0
¢adx � 1
dx

≤

AB �
adx � 1
dx

y � ax
y

xx

1 C

D

x � x�

x�

Gradient 

Gradient at 

Hence the gradient at multiplied by the gradient at A.

But when the gradient at (this can be checked on a graphing calculator).
Gradient at 

Hence 
d
dx

 1ex 2 � ex

C � ex # 1
A � 1a � e,

C is ax

C � lim
dxS0

 

ax1adx � 1 2
dx

CD �
ax�dx � ax

x � dx � x

Below is a formal proof of this.

Proof of derivative of ex

Consider the curve y � ax.

This is another property of the
curve . At (0,1) its
gradient is 1.

y � ex



Using the results for and ln x helps us generalize so that we can find the derivatives
of any exponential or logarithmic function.

To find out how to differentiate we first consider 

Since we can rewrite this function as 

In general, 

and so 
dy

dx
� ln a # ex ln a � ln a # ax

 � ex ln a ax � 1eln a 2 x
1

dy

dx
� ln 4 # 4x

1

dy

dx
� ln 4ex ln 4

 y � ex ln 4

 y � 1eln 4 2 x.eln 4 � 4,

y � 4x.y � ax

ex
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The result for can be combined with the chain rule to create a general rule for
differentiating exponential functions.

ex
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Example

Differentiate

This can be considered as where 

Since and 

 � 5e5x

 
dy

dx
� eu # 5

dy

du
� eudu

dx
� 5

u � 5x.y � eu

y � e5x.

Example

1

dy

dx
� 2xex2�1

y � ex2�1

d
dx

 1ef 1x2 2 � f¿ 1x 2ef 1x2

This now allows us to differentiate the inverse function of known as the
natural logarithmic function

As and are inverse functions, from Chapter 5 we know that 

We can differentiate both sides of this equation (with respect to x).

This is a very important result.

 1

d
dx

 1ln x 2 �
1
x

 1

d
dx

 1ln x 2 �
1

eln x

 1 eln x #
d
dx

 1ln x 2 � 1

d
dx

 1eln x 2 �
d
dx

 1x 2

eln x � x.y � ln xy � ex

y � ln x.
y � ex,

d
dx

 1ln x 2 �
1
x

Example

Differentiate 

dy

dx
� 4 #

1
4x

�
1
x

y � ln14x 2 .

Example

Differentiate 

 � cot x

 
dy

dx
�

1
sin x

# cos x

y � ln1sin x 2 .

Example

Differentiate 

 �
3

3x � 2

 
dy

dx
�

1
3x � 2

# 3

y � ln13x � 2 2 .

If

Then

 �
f¿ 1x 2
f1x 2

 
dy

dx
�

1
f1x 2 # f¿ 1x 2

y � ln1f1x 2 2

d
dx

 1ax 2 � ln a # ax

We will now look at In this case the change of base formula will help.y � loga x.

The result for ln x can be combined with the chain rule to create this general result:

This result is particularly
important for integration in
Chapter 15.



Differentiate the following:

1 2 3

4 5 6

7 8 9

10 11. 12

13 14 15

16 17 18

19 20 21

22 23

9.4 Product rule
Using the chain rule, can be differentiated without multiplying out the

brackets first. However, this does not really help to differentiate 

without some unpleasant simplification. Equally, we cannot currently differentiate

These functions are products of two functions, and to be able to

differentiate these we need to use the product rule.

y � ex sin x.

y � 13x � 2 2 12x � 3 23
y � 12x � 3 24

y � tan1ln x 2y � ln1tan x 2
y � ln1cos x 2y � e4x � sin 2x � ln xy � 4x � log5 x

y � log8 xy � log2 xy � ln 2x � 2x

y � e3x � 3xy � 6 # 5xy � 10x

y � 4xf1x 2 � ln12x2 � 4 2f1x 2 � �2 ln 4x

f1x 2 � ln 7xf1x 2 � ln 3xf1x 2 � e2x�3

f1x 2 � ex2

f1x 2 � �
6

e9xf1x 2 �
2

e5x

f1x 2 � �e4xf1x 2 � e7xf1x 2 � e3x
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Differentiating gives us

 �
1

x ln a

 
d
dx

 1loga x 2 �
1

ln a
#
1
x

loga x �
ln x
ln a

�
1

ln a
# ln x
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d
dx

 1loga x 2 �
1

x ln a

Considering these two general results, it is clear that the results for and ln x are
actually just special cases.

ex

Example

Differentiate 

dy

dx
�

3
x ln 7

y � 3 log7 x.

Example

Differentiate 

dy

dx
� 2k ln 6 # 62x

y � k # 62x.

Example

Differentiate 

We can consider this as 

So

 �
�9

12x � 1 2 1x � 4 2

 �
21x � 4 2 � 12x � 1 2
12x � 1 2 1x � 4 2

  
dy

dx
�

2
2x � 1

�
1

x � 4

y � ln12x � 1 2 � ln1x � 4 2 .
y � ln¢2x � 1

x � 4
≤.

Exercise  3

For where u and v are functions of x,

dy

dx
� v 

du
dx

� u 

dv
dx

y � uv

Proof
Consider where u and v are functions of x.

If is a small increase in x, and and are the corresponding increases in u,
v and y, then

As 

So                

Now when 

Therefore

1

dy

dx
� u 

dv
dx

� v 

du
dx

1

dy

dx
� u 

dv
dx

� v 

du
dx

� 0

dy

dx
� lim
dxS0
¢dy
dx
≤

dx S 0, 
dy

dx
S

dy

dx
, 
du
dx

S

du
dx

, 
dv
dx

S

dv
dx

, du S 0

dy

dx
� u 

dv
dx

� v 

du
dx

� du 

dv
dx

y � uv,  dy � udv � vdu � dudv

y � dy � 1u � du 2 1v � dv 2 � uv � udv � vdu � dudv

dydvdu,dx

y � uv

This is sometimes
remembered in the shortened

form 
dy

dx
� v du � u dv

Sometimes it is useful to use laws of logarithms to assist the differentiation.



Find the derivative of each of these.

1 2 3

4 5 6

7 8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

9.5 Quotient rule
This rule is used for differentiating a quotient (one function divided by another) such as

Consider the function 

We can differentiate this using the product rule.

Let where and 

 
dy

dx
� 6x�213x � 4 2 � 2x�313x � 4 22

dv
dx

� �2x�3du
dx

� 613x � 4 2
v � x�2.u � 13x � 4 22y � uv

y �
13x � 4 22

x2   � x�213x � 4 22

y �
u
v

.

y � e3x1x � 2 22 tan xy � x2 ln x sin x

y �
3
x4 tan ¢3x �

p

2
≤y � e3x sec ¢2x �

p

4
≤

y � 4x2 ln1x2 � 2x � 5 2y � x ln12x � 3 2
y � 4x log8 xy � 12x � 1 23 csc 3x

y � e4x sec 3xy � x3 log6 x

y � 5x cos xy � 13x � 4 23 sin x

y � 15 � 2x 2313x � 4 22y � 1x � 5 2213x � 2 24
y � 1x � 2 2 12x � 1 23y � 2x313x � 2 22

y � x31x � 2 24y � x21x � 1 22y � sin 3x cos 2x

y � sin x cos xy � ln x sin xy � e3x sin x

y � 3x2exy � x3 cos xy � x2 sin x
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Example

Differentiate 

Let where 

 � 312x � 3 2218x � 1 2
 � 312x � 3 22 3213x � 2 2 � 2x � 3 4

 
dy

dx
� 13x � 2 2 # 612x � 3 22 � 312x � 3 23

 � 612x � 3 22
 
dv
dx

� 312x � 3 22 # 2
du
dx

� 3

u � 3x � 2 and v � 12x � 3 23.y � uv

y � 13x � 2 2 12x � 3 23.

There are often common
factors which can be used to
simplify the answer.

Example

Differentiate 

Let where 

 � ex1sin x � cos x 2
 
dy

dx
� ex sin x � ex cos x

dv
dx

� cos x
du
dx

� ex

u � ex and  v � sin x.y � uv

y � ex sin x.

This is the mechanics of the
solution. It is not absolutely
necessary for it to be shown as
part of the solution.

Example

Differentiate 

Let where 

 � 4x12 ln x � 1 2
 � 8x ln x � 4x

 
dy

dx
� 8x ln x � 4x2 #

1
x

dv
dx

�
1
x

du
dx

� 8x

u � 4x2 and  v � ln x.y � uv

y � 4x2 ln x.

Example

Differentiate 

This example is a product of three functions. We need to split it into two parts
and then further split the second part.

Let where 

For we need to use the product

rule again.

 � 612x � 1 22

dv
dx

 
du
dx

� 312x � 1 22 # 2

u � 12x � 1 23    and    v � e2x cos x.y � uv

y � 12x � 1 23e2x cos x.

Let where and

 � 12x � 1 22e2x 36 cos x � 12x � 1 2 12 cos x � sin x 2 4
 
dy

dx
� 612x � 1 22e2x cos x � 12x � 1 23e2x12 cos x � sin x 2

 � e2x12 cos x � sin x 2
 
dv
dx

� 2e2x cos x � e2x sin x

dg

dx
� �sin x 

df
dx

� 2e2x

g � cos xf � e2x v � fg

Exercise  4



Use the quotient rule to differentiate these.

1 2 3

4 5 6 f1x 2 �
x � 3
x � 3

f1x 2 �
ex

x � 4
f1x 2 �

ln x
4x

f1x 2 �
7x

tan x
f1x 2 �

6x2

x � 3
f1x 2 �

ex

cos x
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In this case it was reasonably easy to rearrange into a product, but that is not always so.
Generally, it is not wise to use the product rule for differentiating quotients as it often
leads to an answer that is difficult to simplify, and hence a rule for differentiating
quotients would be useful.

Consider where u and v are functions of x.

This can be written as 

Using the product rule:

This is the quotient rule:

 �

v 

du
dx

� u 

dv
dx

v2

 �
v
v2

#
du
dx

� �
u
v2

#
dv
dx

 
dy

dx
�

1
v

#
du
dx

� u # �
1
v2

#
dv
dx

 � �
1
v2

#
dv
dx

 
d
dx

 ¢1
v
≤ � �v�2 #

d
dx

 1v 2

y � u #
1
v

.

y �
u
v

 �
813x � 4 2

x3

 � 2x�313x � 4 2 14 2
 � 2x�313x � 4 2 33x � 13x � 4 2 4
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This is a slightly different
application of the chain rule.

dy

dx
�

v 

du
dx

� u 

dv
dx

v2

This is often remembered as

The numerator of the quotient
rule is very similar to the
product rule but the sign is
different.

dy

dx
�

v du � u dv
v2

Example

Differentiate using the quotient rule.

Let 

So 

 �
2x13x � 4 2 33x � 13x � 4 2 4

x4

 
dy

dx
�

6x213x � 4 2 � 2x13x � 4 22
x4

du
dx

� 613x � 4 2          
dv
dx

� 2x

u � 13x � 4 22                 v � x2                  v2 � x4

y �
13x � 4 22

x2

Once again, this is the
mechanics of the solution and
so does not necessarily need
to be shown.

 �
813x � 4 2

x3

 �
213x � 4 2 14 2

x3

Example

Differentiate 

Let  

So

 �
e2x12 sin x � cos x 2

sin2 x

 
dy

dx
�

2e2x sin x � e2x cos x
sin2 x

 
du
dx

� 2e2x      
dv
dx

� cos x

u � e2x               v � sin x          v2 � sin2 x

y �
e2x

sin x
.

Example

Differentiate 

Let 

So 

 �
2x � 5 � 6x ln x

x12x � 5 24

 �

1
x

 12x � 5 2 � 6 ln x

12x � 5 24

 
dy

dx
�

1
x

 12x � 5 23 � 6 ln x12x � 5 22
12x � 5 26

du
dx

�
1
x

            
dv
dx

� 612x � 5 22
u � ln x           v � 12x � 5 23             v2 � 12x � 5 26

y �
ln x

12x � 5 23 .

Exercise  5
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7 8 9

10 11 12

13 14 15

16 17 18

19

20 Use the quotient rule to prove the results for tan x, csc x, sec x and cot x. You need

to remember that 

9.6 Implicit differentiation
This is the differentiation of functions that are stated implicitly. Until now we have
mostly considered functions that are stated explicitly, that is, 

Functions defined implicitly have equations that are not in the form Some of

these equations are easily made explicit (such as ) but others are more

difficult to rearrange. Some of these implicit equations may be familiar, such as the circle

equation Differentiating implicit functions does not require

any further mathematical techniques than those covered so far. The key concept utilized

in implicit differentiation is the chain rule.

1x � 4 22 � 1y � 3 22 � 36.

2x � 3y � 5

y � p

y � p

tan x �
sin x
cos x

.

y �

cot ¢2x �
p

3
≤

ln13x � 1 2

y �

sec ¢x �
p

4
≤

e2xy �
x2e3x

1x � 5 22y �
x sin x

ex

y �
413x � 2 25
12x � 3 23y �

sin 2x
e6xy �

ex

ex � e�x

y �
ln x

ln1x � 4 2y �
log6 x

x � 6
y �

e3x

9x2

f1x 2 �
2x

2x � 1
f1x 2 �

4x

1x
f1x 2 �

2x � 9
x2
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Also consider how you could
have proved these two results
using only the chain rule.

1. Differentiate each term, applying the chain rule to functions of the variable.

2. Rearrange the answer to the form
dy

dx
.

Example

Find and for 

Differentiating with respect to x:

 1 2y 

dy

dx
� �6x

6x � 2y 

dy

dx
� 0

3x2 � y2 � 7
d2y

dx2

dy

dx

It is possible to rearrange this
function to an explicit form.
However, unless you are told
otherwise, it is often better to
leave it in this form and
differentiate implicitly.

We can now find the second derivative by differentiating this again. 

Using the quotient rule:

We would usually leave the answer in this form. However, if we wanted as
a function of x, we could proceed as follows:

 �
� 21

17 � 3x2 2 32

 �
�317 � 3x2 2 � 9x2

17 � 3x2 2 32
d2y

dx2

d2y

dx2

 �
�3y2 � 9x2

y3

 �

�3y �
9x2

y
y2

 �

�3y � 3x ¢�3x
y
≤

y2

d2y

dx2 �

�3y � 3x 

dy

dx
y2

� �
3x
y

 1

dy

dx

Method for implicit differentiation

We know that

1 y2 � 7 � 3x2

3x2 � y2 � 7

In a case like this it is important

to be able to explicitly state

so that the second

derivative can be found, but this

is not always the situation.

dy

dx
� ...

Example

Find for 

Differentiating with respect to x:

 1

dy

dx
�

2 cos x
e3xy2 � y

 1 y �
dy

dx
�

2 cos x
e3xy2

 1 3e3xy2¢y �
dy

dx
≤ � 6 cos x

6 cos x � ¢3e3xy3 � e3x3y2
 

dy

dx
≤ � 0

6 sin x � e3xy3 � 9.
dy

dx

Use the product rule to
differentiate .e3xy3

Applying the chain rule gives

d
dx

 1y2 2 � 2y #
dy

dx
.

Note that the answer contains
both x and y.



Some questions will require the second derivative to be found, and a result to be

shown to be true that involves and y. In the examples so far we have found

and then differentiated this again with respect to x to find With other

questions, it is best to leave the result as an implicit function and differentiate for a

second time, implicitly. The following two examples demonstrate this.

d2y

dx2.
dy

dx
� ...

d2y

dx2, 
dy

dx

237
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Example

Find for 

Differentiating with respect to p:

 1

dQ
dp

�
1p � 3 22

2p
�
p

2
 1p � 3 22 cos pp �

2Q
 p � 3

 1 2 

dQ
dp

�
1p � 3 22

p
� p1p � 3 22 cos pp �

4Q
p � 3

 1

2 

dQ
dp

1p � 3 22 �
1
p

� p cos pp �
4Q

1p � 3 23

 1

2 

dQ
dp

1p � 3 22 �
4Q

1p � 3 23 �
1
p

� p cos pp

 1

2 

dQ
dp

 1p � 3 22 � 4Q1p � 3 2
1p � 3 24 �

1
p

� p cos pp

p cos pp �

2 

dQ
dp

 1p � 3 22 � 21p � 3 2 # 2Q

1p � 3 24 �
1
p

sin pp �
2Q

1p � 3 22 � ln p.
dQ
dp

Example

Find the equations of the tangents to when 

Differentiating with respect to x:

To find we now require the y-coordinates. So, from the formula

when we find

At (2, 3) At (2 , 9)

 � 18 � �6

 �
�108

�6
 �

�36
6

 
dy

dx
�

�6 # 2 # 9
12 � 18

 
dy

dx
�

�6 # 2 # 3
12 � 6

 1 y � 3, y � 9

 1 1y � 3 2 1y � 9 2 � 0

 1 y2 � 12y � 27 � 0

12y � y2 � 27

x � 2,3x2y � y2 � 27,

dy

dx

 1

dy

dx
�

�6xy

3x2 � 2y

 1

dy

dx
 13x2 � 2y 2 � �6xy

6xy � 3x2
 

dy

dx
� 2y 

dy

dx
� 0

x � 2.3x2y � y2 � 27

So the equation of the tangent is So the equation of the tangent is

 1 y � 18x � 27 1 y � �6x � 15

 y � 9 � 181x � 2 2 y � 3 � �61x � 2 2
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Example

Show that for 

Differentiating with respect to x:

Differentiating again with respect to x:

1 x2
 

d2y

dx2 � 4x 

dy

dx
� 2y � �

1
x

2y � 2x 

dy

dx
� 2x 

dy

dx
� x2

 

d2y

dx2 �
1
x

� 0

 1 2xy � x2
 

dy

dx
� ln x � 1 � 6

 2xy � x2
 

dy

dx
� ln x �

1
x

# x � 6

x2y � x ln x � 6x.x2
 

d2y

dx2 � 4x 

dy

dx
� 2y � �

1
x

Example

Given that show that 

Differentiating with respect to x:

Differentiating again with respect to x:

From the original function, 

So we have exy � ex
 

dy

dx
� ex

 

dy

dx
� ex

 

d2y

dx2 � �exy

�cos x � �exy

exy � ex
 

dy

dx
� ex

 

dy

dx
� ex

 

d2y

dx2 � �cos x

exy � ex
 

dy

dx
� �sin x

2y � 2 

dy

dx
�

d2y

dx2 � 0.exy � cos x,



This is because 

 1 cos y � 21 � x2

 1 cos2 y � 1 � x2
1

dy

dx
�

1

21 � x2

 1 1 � cos2 y � x2
1

dy

dx
�

1
cos y

 1 sin2 y � x2sin y � x
1 � cos y #

dy

dx
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1 Find for:

a b c

d e f

g h i

j k

2 Find and for:

a b c

3 For the function defined implicitly by find the equations

of the tangents at 

4 Show that for 

5 Given that show that 

6 Show that for 

7 Given that show that 

9.7 Differentiating inverse trigonometric
functions
In order to find the derivative of (or arcsin x), we apply implicit differentiation.

Consider 

Differentiating with respect to x:

1 x � sin y

y � sin�1 x

sin�1 x

x2e2x¢4y � 4 

dy

dx
�

d2y

dx2≤ � �1.e2xy � ln x,

xy � ln x.x3
 

d2y

dx2 � x2
 

dy

dx
� xy � �2

x2
 

d2y

dx2 � 2x 

dy

dx
� x2y � 0.xy � sin x,

exy � sin x.2y �
dy

dx
�

d2y

dx2 � 0

x � 1.

x4 � 2xy � y2 � 4,

xey � 84xy � sin x � y4y � 3y2 � x2

d2y

dx2

dy

dx

1x � y 24
y

� 8x � ex1x � y 23 � ey

x4 � y ln yy � cos1x � y 2e2xy3 � 9 � sin 3x

ey � 1x � y 22xy � y2 � 71x � 3 2 1y � 2 2 � ln x

y3 � 1x � 04x2 � y2 � 9x3 � xy � 4

dy

dx

238

Dividing by (since ):

1 2y � 2 

dy

dx
�

d2y

dx2 � 0

ex � 0 ∀ x H �ex

 1 2exy � 2ex
 

dy

dx
� ex

 

d2y

dx2 � 0

 1 exy � 2ex
 

dy

dx
� ex

 

d2y

dx2 � �exy
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Exercise  6 For 
dy

dx
�

1

21 � x2
y � sin�1 x

We can now consider 

Differentiating with respect to x:

 �
1

2a2 � x2

 �
2a2

a2a2 � x2

 1

dy

dx
�

1

aC1 �
x2

a2

1

dy

dx
�

1
a cos y

1 � a cos y 

dy

dx

 1 x � a sin y

 1

x
a

� sin y

y � sin�1¢x
a
≤

For 
d
dx

�
1

2a2 � x2
y � sin�1 a x

a
b

Similarly can be obtained for and 

For 

For 

Now consider 

1 x � tan y

y � tan�11x 2
y � cos�1 a x

a
b      

dy

dx
�

�1

2a2 � x2

y � cos�1 x           
dy

dx
�

�1

21 � x2

y � cos�1¢x
a
≤.y � cos�11x 2dy

dx

This is because 

 1 1 � cos2 y �
x2

a2

 1 1 � cos2 y �
x2

a2
sin y �

x
a



We could also consider these examples to be applications of the chain rule. This may be
easier and shorter (but both methods are perfectly valid). This is demonstrated below.

In some cases it is not possible to use the stated results, and the chain rule must be
applied.

 �
4

21 � 16x2

 Then 
dy

dx
�

1

21 � 14x 22 #4

y � sin�114x 2
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Differentiating with respect to x:

1

dy

dx
�

1
x2 � 1

1

dy

dx
�

1
sec2 y

1 � sec2 y #
dy

dx

9  Differentiation 2 – Further Techniques

240

For y � tan�1x       
dy

dx
�

1

1 � x
2

A similar result can be found for tan�1¢x
a
≤.

For 
dy

dx
�

a
a2 � x2y � tan�1¢x

a
≤

Example

Differentiate 

 
dy

dx
�

�1

29 � x2

y � cos�1¢x
3
≤.

Example

Differentiate 

 �
4

21 � 16x2

 �
1

B
1
16

 21 � 16x2

 
dy

dx
�

1

B
1
16

� x2

y � sin�114x 2 .

Example

Differentiate 

Here we must use the chain rule.

 �
1

21x11 � x 2

 
dy

dx
�

1
1 � 11x 22 #

1
2

 x� 
1
2

y � tan�11x.

Differentiate the following functions.

1

2

3

4

5

6

7

8

9 y � sin�11ln 5x 2
y � tan�112x � 1 2
y � cos�12x � 4

y � tan�1¢ex

2
≤

y � cos�113x 2
y � sin�1¢2x

3
≤

y � tan�1¢ x
10
≤

y � cos�1¢x
8
≤

y � sin�1¢x
5
≤

Exercise  7

Remember that

So 

 � x2 � 1

 sec2 y � tan2 y � 1

sec2 x � tan2 x � 1

In this case a �
1
4

.



Differentiate the following functions using the appropriate techniques and results.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 Find for 

18 Find for 19 Find for 

20 Find for 

9.9 Further differentiation problems
The techniques covered in this chapter can also be combined to solve differentiation
problems of various types, including equations of tangents and normals, and stationary
points. Problems of this type are given in Exercise 9.

x4y3 � y sin x � 2.
dy

dx

x2y � exy2 � 9.
dy

dx
f1x 2 �

1
x

 tan�1¢x
4
≤.f¿ 14 2

f1x 2 �
x31x � 7 22
12x � 1 23 .f¿ 12 2y �

ln1cot x 2
ex

y � x sin x ln xf1x 2 �
cos�1 x

3x2y � 6 sin�1 2x

y � 3 cos 2x sin 4xf1x 2 �
x2 ln x
x � 9

y �
log2 x

1x � 4 23

f1x 2 � 3x sin xy �
x sin x

e4xf1x 2 �
sin 3x

ex

y � x2 ln xf1x 2 � x3e�4xy � sec x � e5x

f1x 2 � cos 8x � 29xy � 12x � 7 23f1x 2 � x2 � 5x � 9
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9.8 Summary of standard results
This chapter has covered a variety of techniques including the chain rule, product rule,
quotient rule and implicit differentiation. These have produced a number of standard
results, which are summarized below.
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sin x cos x

cos x

tan x

csc x

sec x sec x tan x

cot x

ln x

a
a2 � x2tan�1¢x

a
≤

�1

2a2 � x2
cos�1¢x

a
≤

1

2a2 � x2
sin�1¢x

a
≤

1
1 � x2tan�11x 2

�1

21 � x2
cos�11x 2

1

21 � x2
sin�11x 2

1
x ln a

loga x

ax ln aax

1
x

exex

�csc2 x

�csc x cot x

sec2 x

�sin x

dy

dx
y �

Within this chapter and Chapter 8, we have covered all of the differentiation techniques
and skills for IB Higher Level. One of the key skills in an examination is to be able to
identify which technique is required to solve a particular problem. Exercise 8 contains a
mixture of examples that require the knowledge and use of standard results and the
above techniques.

Exercise  8

Example

Find the stationary point for and determine its nature.

In this case, it is easiest to consider this as 

Using the product rule, 

For stationary points, 

Hence 

At 

Hence the stationary point is 

 � ex1x � 2 2
 
d2y

dx2 � ex1x � 1 2 � ex

¢�1, �
1
e
≤

 � �
1
e

 y � e�1 # �1

 x � �1, 

1 x � �1

ex1x � 1 2 � 0

dy

dx
� 0

 � ex1x � 1 2
 
dy

dx
� exx � ex

y � xex.

y

ex � x



6 Find the exact value of the gradient of the tangent to where

7 Find the gradient of the tangent to at the point where

and [IB May 01 P1 Q4]

8 A curve has equation 
Find the equation of the tangent to this curve at the point (1, 1).

[IB May 02 P1 Q17]

9 A curve has equation 
Find the equation of the normal to the curve at the point (2,1).

[IB May 03 P1 Q10]

10 Find the stationary points of 

11 Find the stationary points of for 

12 Show that the point lies on the circle with equation

and the parabola with equation 

Also show that these curves share a common tangent at P, and state the

equation of this tangent.

13 If find [IB Nov 04 P1 Q5]

14 Consider the function 

a Find 

b Find the exact values of
i
ii [IB Nov 03 P1 Q8]

15 Consider the equation 
a Find y when and 

b Find when and [IB Nov 03 P1 Q15]y 6 0.x � 1
dy

dx

y 6 0.x � 1
2xy2 � x2y � 3.

f¿ 1p 2 .
f1p 2
f¿ 1t 2 .

f1t 2 � 3 sec 2t � 5t.

d2y

dx2
.y � ln12x � 1 2 ,

y2 � 12 � 4x.1x � 2 22 � 1y � 2 22 � 32

P12, �2 2
0 6 x 6 p.y �

e2x sin x
x � 1

y � x2 tan�1 x.

x3y2 � 8.

xy3 � 2x2y � 3.

y 7 0.x � 1

3x2 � 4y2 � 7

x �
p

4
.

y �
1

x sin x
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1 Find the gradient of the tangent to where 

2 Find the gradient of the tangent to where 

3 Given find the rate of change where 

4 Find the equation of the tangents to at 

5 Find the gradient of the tangent to at the point 

6 Find the value of when for 

7 Find the stationary points of 

8 Find the stationary points of 

9 Find the stationary points, and their nature, of the curve given by 

10 Show that the gradient of the tangent to the curve given by

at is ln p.x � p
xy
p

� sin x ln x � cos x � 1

y �
x3

ex.

y � 4x2 ln x, x 7 0.

y �
x2

ex
.

y

x
�

sin 2x
ex

.x � p
d2y

dx2

1e, e2 2 .2x ln x � y ln y � 2e11 � e 2
x � 1.x2y � y2 � 6

x � 2.y �
4x

ex1x � 2 2 ,
x �
p

4
.y � ln21 � cos 2x

x �
1

23
.y � tan�1 3x

244

So, at 

So therefore is a local minimum turning point.¢�1, �
1
e
≤d2y

dx2 7 0,

 �
1
e

 x � �1, 
d2y

dx2 � e�111 2
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Exercise  9

Review exercise

1 Differentiate these functions.

a b c 

d e 

2 Differentiate these functions.

a b c 

d e 

3 Find for: a b 

4 Find for 

5 Differentiate y � 2 tan�1¢1 � cos x
sin x

≤.
x2 sin x � exy � 7.

d2y

dx2

x3 � y ln x4y2 � 3x2y � 5
dy

dx

y � log10¢e2x cos 3x
1x � 4 22 ≤y � ln¢3x � 4

2x � 1
≤

f1x 2 �
e5x

2x � 4
y � ln1x sin x 2y � e4x sin 3x

y � ln 6x � 3xf1x 2 � 6e8x

y � 6t � sec 3tf1x 2 �
7

213 � 2x2 2y � 513x � 2 24
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