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Pascal’s triangle is constructed by
adding together the two numbers
above as shown (with a 1 on the end
of each row).There are many
interesting results and applications
related to this triangle. For example,
notice that the sum of each row is a
power of 2.
Pascal’s triangle is named after Blaise
Pascal, born 1623, a French
mathematician who made great
contributions to the fields of number theory, geometry and probability. However, it is
not universally known as Pascal’s triangle as it was not discovered first by him.There is
evidence that Chinese and Persian mathematicians independently found the triangle as
early as the 11th century. Chia Hsien,Yang Hui and Omar Khayyam are all documented
as using the triangle. In fact, there may be reference to the triangle as early as 450 BC
by an Indian mathematician who described the “Staircase of Mount Meru”. In China
the triangle is known as the Chinese triangle, and in Italy it is known as Tartaglia’s
triangle, named after a 16th century Italian mathematician, Nicolo Tartaglia.

http://www.bath.ac.uk/~ma3mja/history.html

Accessed 14 February 2006

A sequence is defined as an ordered set of objects. In most cases these objects are
numbers, but this is not necessarily the case. Sequences and series occur in nature, such
as the patterns on snail shells and seed heads in flowers, and in man-made applications
such as the world of finance and so are a useful area of study. Whereas a sequence is a
list of objects in a definite order, a series is the sum of these objects.

Consider these sequences:

1. 

2.  J, A, S, O, N, D, J,

3.  M, W, F, S, T, T, S,

4.  Moscow, Los Angeles, Seoul, Barcelona, Atlanta, Sydney, Athens, Beijing, London,

5.  2, 4, 6, 8, 10,

6.  10, 13, 16, 19, 22,

7.  3, 6, 12, 24, 48,

8.  1, 3, 7, 15, 31,

How can these sequences be described?

Here are some possible descriptions:
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1.  Plane shapes beginning with triangle, with one vertex (and side) added each time.

2.  Initial letter of each month (in English) beginning with July.

3.  Initial letter of days, starting with Monday, going forward each time by two days.

4.  Olympic cities beginning with Moscow (1980).

5.  Even numbers beginning with 2, increasing by 2 each time.

6.  Numbers beginning with 10, increasing by 3 each time.

7.  Beginning with 3, each term is the previous term multiplied by 2.

8.  Beginning with 1, each term is double the previous term plus 1.

It is natural to describe a sequence by the change occurring each time from one term to
the next, along with the starting point. Although all of the above are sequences, in this
course only the types of which 5, 6 and 7 are examples are studied.

In order to describe sequences mathematically, some notation is required.

is known as the nth term of a sequence.
This provides a formula for the general term of a sequence related to its term number, n.

is the notation for the sum of the first n terms.
a or is commonly used to denote the initial term of a sequence.u1

Sn

un

6.1 Arithmetic sequences
An arithmetic sequence, sometimes known as an arithmetic progression, is one where
the terms are separated by the same amount each time. This is known as the common
difference and is denoted by d. Note that for a sequence to be arithmetic, a common
difference must exist.

Consider the sequence 5, 7, 9, 11, 13,

The first term is 5 and the common difference is 2.
So we can say and 

Sequences can be defined in two ways, explicitly or implicitly. An implicit expression
gives the result in relation to the previous term, whereas an explicit expression gives the
result in terms of n. Although it is very easy to express sequences implicitly, it is usually
more useful to find an explicit expression in terms of n.

Here, an implicit expression could be 

For an explicit expression consider this table.

un � un�1 � 2.

d � 2.a � 5

p

nth term previous term

n 1 2 3 4 5

5 7 9 11 13un

In this case, un � 2n � 3.

Compare this with 
finding the straight line
with gradient 2 and 
y-intercept 3.

In this course, two types of sequence are considered: arithmetic sequences and
geometric sequences.
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1 Find for these sequences.
a 5, 7, 9, 11, 13,
b 1, 6, 11, 16, 21,
c 8, 14, 20, 26, 32,
d 60, 51, 42, 33, 24,
e

2 For the sequence 7, 18, 29, 40, 51, find and 
3 For the sequence 200, 310, 420, 530, 640, find and 
4 For the sequence find and 

5 For the sequence find and 

6 For 9, 16, 23, 30, 37, which term is the first to exceed 1000?
7 For 28, 50, 72, 94, 116, which term is the first to exceed 500?
8 For 160, 154, 148, 142, 136, which term is the last positive term?
9 Find given and 

10 Find given and 
11 Find given and 
12 Find given and 
13 Given that k, 8, 7k are consecutive terms of an arithmetic sequence, find k.
14 Given that are consecutive terms of an arithmetic

sequence, find k.
15 Given that are consecutive terms of an arithmetic

sequence, find k.

16 Given that are consecutive terms of an arithmetic sequence,

find k.

k2 � 4, 29, 3k

4k � 2, 18, 9k � 1

k � 1, 11, 2k � 1

u14 � �11.u8 � �8un

u7 � 8.u3 � 32un

u10 � 97.u4 � 43un

u9 � 33.u5 � 17un

p

p

p

u15.un1, 
3
2

, 2, 
5
2

, 3, p

u19.un17, 10, 3, �4, �11, p

u13.unp

u20.unp

4, 0, �4, �8, �12, p

p

p

p

p

un

Example

If are consecutive terms of an arithmetic sequence, find the

possible values of k.
As the sequence is arithmetic, a common difference must exist.

Hence and 

So 

 1 k � �3 or k � 8
 1 1k � 3 2 1k � 8 2 � 0

 1 k2 � 5k � 24 � 0

 k2 � 6k � 12 � 12 � k

d � k2 � 6k � 12.d � 12 � k

k, 12, k2 � 6k

Exercise  1

6.2 Sum of the first n terms of an 
arithmetic sequence

An arithmetic series is the sum of an arithmetic sequence.

So for i.e. 8, 11, 14, 17, 20, the arithmetic series is

So means 8 � 11 � 14 � 17 � 20 � 70.S5

Sn � 8 � 11 � 14 � 17 � 20 � ...
p ,un � 3n � 5,

It is clear that an arithmetic sequence will be of the form

Hence, the general formula for the nth term of an arithmetic sequence is

a, a � d, a � 2d, a � 3d, a � 4d, p

un � a � 1n � 1 2d

Example

Consider the arithmetic sequence 4, 11, 18, 25, 32,
(a) Find an expression for the nth term of the sequence.
(b) Find the 12th term of the sequence.
(c) Is (i) 602 (ii) 711 a member of this sequence?

(a) Clearly for this sequence and 
so

(b) Hence

(c) (i) 

Since n is not an integer, 602 cannot be a term of this sequence.
(ii) 

Clearly 711 is a member of the sequence, the 102nd term.
 1 n � 102

 1 7n � 714
 7n � 3 � 711

 1 n � 86.4
 1 7n � 605

 7n � 3 � 602
 � 81

 u12 � 7 � 12 � 3

 un � 7n � 3
 un � 4 � 7n � 7
 un � 4 � 71n � 1 2

d � 7,u1 � a � 4

u12,
un,

p

Example

What is the nth term of a sequence with and 
If then 
If then 
Subtracting, 

Now substituting this into 

Hence 

It is easy to verify that this is the correct formula by checking u12.
 � 100 � 3n

 un � 97 � 31n � 1 2
 1 a � 97

 a � 18 � 79
 a � 6d � 79,

 1 d � �3
 �5d � 15

a � 11d � 64.u12 � 64,
a � 6d � 79.u7 � 79,

u12 � 64?u7 � 79
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1 Find a formula for for these series.

a

b

c

d

e

2 Find for 

3 For the series obtained from the arithmetic sequence find 
4 Find the sum of the first 20 multiples of 5 (including 5 itself).
5 Find the sum of the multiples of 7 between 100 and 300.
6 Find an expression for the sum of the first n positive integers.
7 Find an expression for the sum of the first n odd numbers.
8 Given that three consecutive terms of an arithmetic sequence add together

to make 30 and have a product of 640, find the three terms.

9 Find the number of terms in the arithmetic series 
required to exceed 700.

10 Find the greatest possible number of terms in the arithmetic series
such that the total is less than 200.

11 What is the greatest total possible (maximum value) of the arithmetic series

12 In an arithmetic progression, the 10th term is twice the 5th term and the
30th term of the sequence is 60.
a Find the common difference.
b Find the sum of the 9th to the 20th terms inclusive.

187 � 173 � 159 � ... ?

18 � 22 � 26 � ...

9 � 14 � 19 � 24 � ...

S12.un � 5n � 3,

8 � 15 � 22 � 29 � 36 � ... .S7

1
2

�
5
6

�
7
6

�
3
2

�
11
6

� ...

2008 � 1996 � 1984 � 1972 � 1960 � ...

80 � 77 � 74 � 71 � 68 � ...

8 � 10 � 12 � 14 � 16 � ...

2 � 5 � 8 � 11 � 14 � ...

Sn

Example

Given and find 

i ii
i

i  –  ii   ii

Substituting in  i

So 

1 u11 � 44 � 2 � 42
un � 4n � 2
un � a � 1n � 1 2d � 2 � 41n � 1 2

 1 d � 4
 1 3d � 12
 a � 3d � 14

a � 2
a � 3d � 14

2a � 3d � 16
1 a � 3d � 141 2a � 3d � 16
1 7a � 21d � 981 4a � 6d � 32

S7 �
7
2

 12a � 6d 2 � 98S4 �
4
2

 12a � 3d 2 � 32

u11.S7 � 98,S4 � 32

Exercise  2

How can a formula for be found?

Re-ordering,

Adding,

This is the formula for It can be expressed in two ways:Sn.

 1 Sn �
n
2

 32a � 1n � 1 2d 4

 � n 32a � 1n � 1 2d 4

 2Sn � 2a � 1n � 1 2d � 2a � 1n � 1 2d � ... � 2a � 1n � 1 2d � 2a � 1n � 1 2d

Sn � un � un�1 � ...� u2 � u1 � 3a � 1n � 1 2d 4 � 3a � 1n � 2 2d 4 � ... � 1a � d 2 � a

Sn � u1 � u2 � p � un�1 � un � a � 1a � d 2 � ... � 3a � 1n � 2 2d 4 � 3a � 1n � 1 2d 4

Sn

This is because
un � a � 1n � 1 2dSn �

n
2

 3u1 � un 4Sn �
n
2

 32a � 1n � 1 2d 4

So in the above example,

 �
3
2

 n2 �
13
2

 n

 �
n
2

 13n � 13 2

 �
n
2

 116 � 3n � 3 2

 Sn �
n
2

 316 � 31n � 1 2 4

Example

Find a formula for for 7, 15, 23, 31, 39, and hence find 
Here and 

So and 

 S8 � 280 Sn � 4n2 � 3n

 S8 � 256 � 24 Sn �
n
2

 18n � 6 2

 S8 � 4 � 64 � 3 � 8 Sn �
n
2

 314 � 81n � 1 2 4

d � 8.a � 7
S8.pSn

Example

Find the number of terms in the series 
required to exceed 500.

So 

So (The solution of is not valid as n must be positive.)
The number of terms required in the series is 13 (and ).S13 � 520

�13.1n 7 12.7

1 3n2 � n � 500 7 0

3n2 � n 7 500

 Sn � 3n2 � n

 Sn �
n
2

 38 � 61n � 1 2 4

a � 4, d � 6

4 � 10 � 16 � 22 � 28 � ...

�13.1 12.7 n0

y
y � 3n2 � n � 500
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Sum of a geometric series
As with arithmetic series, a geometric series is the sum of a geometric sequence.

So 

The formula for can be expressed in two ways:Sn

 1 Sn �
a˛1rn � 1 2

r � 1

 1 Sn1r � 1 2 � a˛1rn � 1 2

 1 rSn � Sn � arn � a

 1 rSn � Sn � arn � a

 1 rSn � ar � ar2 � p � arn�1 � arn

Sn � a � ar � ar2 � ar3 � p � arn�1

Example

Given that the following are three consecutive terms of a geometric sequence,
find k.

So 

 1 k � 6

 1 k3 � 8k2 � 22k � 60 � 0

 1 4k2 � 8k � 4 � k3 � 14k � 4k2 � 56

 1 12k � 2 22 � 1k � 4 2 1k2 � 14 2

r �
2k � 2
k � 4

�
k2 � 14
2k � 2

k � 4, 2k � 2, k2 � 14

Use a calculator to solve
the cubic equation.

Sn �
a˛1rn � 1 2

r � 1
  or  Sn �

a˛11 � rn 2

1 � r

Example

Find for 
Here and 

So 

 � �
4
3

 1 1�2 2n � 1 2

 Sn �
41 1�2 2n � 1 2

�2 � 1

r � �2.a � 4
4 � 8 � 16 � 32 � 64.Sn

Exercise  3

1 Find the 6th term and the nth term for these geometric sequences.
a 8, 4, 2,
b 80, 20, 5,
c 2, 6, 18,
d
e
f
g a � 6, r � 5

u1 � 12, r � 2
100, �50, 25, p

5, �10, 20, p

p

p

p

6.3 Geometric sequences and series
An example of a geometric sequence is 4, 8, 16, 32, 64, 

In a geometric sequence each term is the previous one multiplied by a non-zero
constant. This constant is known as the common ratio, denoted by r.

The algebraic definition of this is:

p

un�1

un
� r 3 the sequence is geometric

Formula for 
A geometric sequence has the form

a, ar, ar2, ar3, p

un

So un � arn�1

Example

Find a formula for for the geometric sequence 
6, 12, 24, 48, 96,

Here and 

So un � 6 � 2n�1.

r � 2.a � 6

p

un

Example

Find given that and 

So 

So 

i.e. or un � 4 � 1�3 2n�1un � 4 � 3n�1

1 a � 4
1 9a � 36
ar2 � 36

1 r � ;3
r2 � 9

u5

u3
�

ar4

ar2 � r2 �
324
36

u3 � ar2 � 36           u5 � ar4 � 324

u5 � 324.u3 � 36un

This technique of dividing
one term by another is
commonly used when
solving problems related
to geometric sequences.
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Plotting a graph of the above series can help to visualize what is happening with these
series.

n0

Sn

n0

Sn

n0

Sn

All of the above series are infinite but only the first series converges. Finding the infinite
sum of a divergent series does not make any sense, and hence in order to find the sum
to infinity of a series, the series must converge.

In order to find a result for the sum of an infinite series, it is important to understand the
concept of a limit.

The concept of a limit is not particularly easy to define. The formal definition can be
stated as

“A number or point L that is approached by a function f(x) as x approaches a if, for every
positive number there exists a number such that if ”

This is not necessarily helpful in visualizing the meaning of the term. A more informal
viewpoint may help.

Consider Freddie Frog, who gets tired very quickly. Freddie hops 2 metres on his first hop.
On his second hop, he is tired and can hop only half the distance, 1 metre. This
continues, and each time he can hop only half the distance of his previous hop.

Consider Freddie trying to hop across a 4 metre road:

0 6 �x � a� 6 d.�f˛1x 2 � L� 6 ede,

With each hop, he gets closer to the other side, but will he ever make it across the road?
The distance that he has hopped can be considered to be

It is clear that he is getting very close to a distance of 4 metres but, as each hop is only
half of his previous hop (and therefore half of the remaining distance), he will never
actually reach 4 metres. In this situation, 4 metres is considered to be the limit of the
distance hopped.

A limit is a value that a function or series approaches and becomes infinitesimally close
to but will never reach. This idea has been covered in Chapter 3 – a horizontal asymptote
is a value that a function approaches as x becomes large but never reaches. It is said that
a series converges to a limit.

2 � 1 �
1
2

�
1
4

�
1
8

�
1
16

� ...

2 Find the sum of the first eight terms for each of the sequences in question 1.
Also find the sum to n terms of these numerical sequences.

3 Find the sum to n terms of these geometric sequences.

a

b

c

4 Find the general term, of the geometric sequence that has:
a and 

b and 

c and 

d and 

5 Given these three consecutive terms of a geometric sequence, find k.
a

b

c

6 Find the first term in this geometric sequence that exceeds 500.

7 If and find the last term that is less than 8000.

8 For the geometric series how many terms are
required for a total exceeding 600?

9 The first two terms of a geometric series have a sum of The fourth and
fifth terms have a sum of 256. Find the first term and the common ratio of
the series.

�4.

3 � 6 � 12 � 24 � p ,

r � 4,a � 8
2, 4, 8, 16, p

k
2

, k � 8, k2

k � 1, 2 � 2k, k2 � 1

k � 4, k � 8, 5k � 4

u7 � 512u2 � �
1
2

u5 � 324u2 � �12

u5 �
10
3

u2 � 90

u6 � 160u3 � 20
un,

1 � 3x � 9x2 � 27x3 � p

1 � x � x2 � p

x � x2 � x3 � p

6.4 Sum of an infinite series
In order to consider infinite series, it is first important to understand the ideas of
convergence and divergence. If two (or more) things converge, then they move towards
each other. In a sequence or series, this means that successive terms become closer and
closer together; to test convergence, the gap between the terms is examined.

Consider these three series:

1.  

2.  

3.  

In the first (geometric) series, the gap between the terms narrows so the series is said to
be convergent.

In the second (geometric) series, the gap between the terms widens and will continue to
increase, so the series is said to be divergent.

The third series is arithmetic and so the gap between the terms remains the same
throughout, known as the common difference. Although the gap remains constant, the
series continues to increase in absolute size towards infinity and hence all arithmetic
series are divergent.

4 � 7 � 10 � 13 � p

5 � 10 � 20 � 40 � p

24 � 12 � 6 � 3 � p
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A recurring decimal such as can be considered to be an infinite

geometric series as it is This means that the formula for

the sum to infinity can be used to find an exact (fractional) value for the decimal. This is

demonstrated by example.

5 �
8
10

�
8

100
�

8
1000

� ... .

.
5.8 � 5.8888888 p

Example

Find the exact value of the recurring decimal 1.2.

This can be considered as 

So the decimal part is a geometric series with and 

Hence a limit exists since 

So we can write 
.

1.2 � 1 �
2
9

�
11
9

.

S
q

�
a

1 � r
�

2
10
9
10

�
2
9

.

r �
1
10

6 1.

r �
1

10
.a �

2
10

1 �
2
10

�
2

100
�

2
1000

� ...

Exercise  4

Determine whether the series below converge. If they do, find the sum to infinity.
1
2
3
4
5

Find the sum to infinity for the geometric series with:

6

7

8

9

Find the range of values of x for which the following series converge.

10

11

Find the exact value of these recurring decimals.

12

13

14 7.3
#

4
#

2.1
#

6
#

6.4
#

4x � 4 �
4
x

�
4
x2 � ...

1 � x � x2 � x3 � ...

a � 9, r � �
3
4

a � 60, r � �
1
5

a � 100, r �
2
3

a � 6, r �
1
2

8 � 12 � 18 � p

�64 � 40 � 25 � p

4 � 12 � 36 � p

81 � 27 � 9 � p

20 � 10 � 5 � p

The formal definition for a limit in relation to functions given above is also true for series.

is true provided that can be made as close to L as required by choosing n

sufficiently large. In mathematical notation this can be stated “Given any number

there exists an integer N such that for all ”.

Returning to the consideration of geometric series, will all infinite series converge to a
limit? It is clear that the above series describing the frog does converge to a limit.
However, consider the series

It is immediately clear that this series will continue to grow, and the gap between terms
will continue to grow.

This is the key to understanding whether a series will converge – the gap between
successive terms. If this gap is decreasing with each term, then the series will ultimately
converge. Hence for the sum of a geometric series to converge, the common ratio must
be reducing the terms. Putting this into mathematical notation,

1 � 10 � 100 � 1000 � 10000 � ...

n � N�Sn � L� 6 ee 7 0,

Snlim
nSq

Sn � L

The notation for this is where L is the limit.lim
nSq

Sn � L

a series will only converge if �r� 6 1

If then will have a limit of zero as n becomes very large.

Considering the formula for the sum of n terms of a geometric series,

For large values of n (as n approaches ), if 

So when the sum becomesn S q,

�r� 6 1.arn
S 0q

Sn �
a˛11 � rn 2

1 � r
�

a � arn

1 � r

rn�r� 6 1,

Think of etc.0.110, 0.150

S
q

�
a

1 � r
  1�r� 6 1 2

This formula can be used to find the limit of a convergent series, also known as the sum
to infinity or infinite sum.

Example

Show that the sum to infinity of exists and find this

sum.

Clearly this series converges as 

So S
q

�
a

1 � r
�

8
3
4

�
32
3

.

�r� �
1
4

6 1.

8 � 2 �
1
2

�
1
4

�
1
8

� ...

.
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1 In his training, Marcin does 10 sit-ups one day, then 12 sit-ups the following
day. If he continues to do 2 more each day, how long before he completes
1000 sit-ups?

2 Karen invests $2000 in an account paying 8% per year. How much will be in
the account after 4 years?

3 Anders invests 50 000 DKr (Danish kroner) at 12% per year. How much is it
worth after 6 years?

4 A kind benefactor sets up a prize in an international school. The benefactor
donates £10 000. The school invests the money in an account paying 5%
interest. If £750 is paid out annually, for how long can the full prize be given
out?

5 If Yu wants to invest 50 000 yen with a return of 20 000 yen over 8 years,
what % rate must she find?

6 What initial investment is required to produce a final balance of £12 000 if
invested at 8% per year over 4 years?

7 In a Parisian sewer, the population of rats increases by 12% each month.
a If the initial population is 10 000, how many rats will there be after 5 months?
b How long before there are 50 000 rats?

8 The number of leopards in a Kenyan national park has been decreasing in
recent years. There were 300 leopards in 2000 and the population has
decreased at a rate of 9% annually.
a What was the population in 2005?
b When will the population drop below 100?

9 Each time a ball bounces, it reaches 85% of the height reached on the previous
bounce. It is dropped from a height of 5 metres.
a What height does the ball reach after its third bounce?
b How many times does it bounce before the ball can no longer reach a

height of 1 metre?

Exercise  5

6.6 Sigma notation
Sigma is the Greek letter that corresponds to S in the Roman alphabet, and is written 
or The form is often used in statistics but the capital form is used to denote a
sum of discrete elements. This notation is a useful shorthand rather than writing out a
long string of numbers. It is normally used on the set of integers.

Consider 

This can be written as a
7

r�1
r

1 � 2 � 3 � 4 � 5 � 6 � 7

©s©.
s

Last element (ending at 7)1r � 7 2

This is the rth term of the sequence.

First element (starting from 1)1r � 1 2

Similarly,

2 � 5 � 8 � 11 � 14 � a
5

r�1
3r � 1

15 Find the sum
a of the even numbers from 50 to 100 inclusive
b of the first ten terms of the geometric series that has a first term of 16 and

a common ratio of 1.5

c to infinity of the geometric series whose second term is and third term 
1
2

.
2
3

6.5 Applications of sequences and series
Although sequences and series occur naturally and in many applications, these mostly
involve more complicated series than met in this course. Most common examples of
geometric series at this level model financial applications and population.

Example

Katherine receives h200 for her twelfth birthday and opens a bank account
that provides 5% compound interest per annum (per year). Assuming she
makes no withdrawals nor any further deposits, how much money will she
have on her eighteenth birthday?

This can be considered as a geometric series with and 
The common ratio is 1.05 because 5% is being added to 100%, which gives

So in six years the balance will be 

So she will have h268.02 on her eighteenth birthday.

If Katherine receives h200 on every birthday following her twelfth, how much
will she have by her eighteenth?

After one year the balance will be 

After two years, the balance will be 

This can be expressed as 

So 

The part in brackets is a geometric series with and 

So the sum in brackets is

Hence the balance on her eighteenth birthday will be 
h1360.38.200 � 6.8019 p �

� 6.8019 p

111 � 1.056 2

1 � 1.05

r � 1.05.a � 1

u7 � 20011.056 � 1.055 � ... � 1.05 � 1 2

 � 20011.052 � 1.05 � 1 2

 � 1.052 � 200 � 1.05 � 200 � 200

 u3 � 1.0511.05 � 200 � 200 2 � 200

u3 � 1.05u1 � 200.

u2 � 1.05 � 200 � 200.

1 u7 � 268.02
u7 � 200 � 1.056

105% � 1.05.

r � 1.05.a � 200

is the first term. After
six years the balance will
be u7.

u1
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Result 1

n times

a
n

r�1
1 � 1 � 1 � p � 1 � n

a
n

r�1
a � an where a is a constant.

This should be obvious as 

We can also see that a constant can be removed outside a sum:

Result 2

a
n

r�1
a � aa

n

r�1
1

a
n

r�1
a � a � a � a � p � a � na

a
n

r�1
r �

n˛1n � 1 2

2

This is the sum of the first n natural numbers, and each of these sums is also a triangular
number (because that number of objects can be arranged as a triangle).

For example, 

Result 3

a
3

r�1
r �

313 � 1 2

2
� 6

a
2

r�1
r �

212 � 1 2

2
� 3

a
n

r�1
r2 �

1
6

 n˛1n � 1 2 12n � 1 2

These three results can be used to simplify other sigma notation sums. Note that they
apply only to sums beginning with If the sums begin with another value the
question becomes more complicated, and these are not dealt with in this curriculum.

r � 1.

Example

Simplify and hence find 

 � 4 �  

1
6

 n˛1n � 1 2 12n � 1 2 � 3 

n˛1n � 1 2

2
� 5n

 a
n

r�1
4r2 � 3r � 5 � 4a

n

r�1
r2 � 3a

n

r�1
r � 5a

n

r�1
1

a
6

r�1
4r2 � 3r � 5.a

n

r�1
4r2 � 3r � 5

We know that is the rth term because when and when
etc.

Both arithmetic and geometric series can be expressed using this notation.

r � 2, 3r � 1 � 5,
r � 1, 3r � 1 � 23r � 1

Example

Consider the arithmetic series

Express the series using sigma notation.
This has and So the corresponding sequence has the
general term

This series can be expressed as 

The first n terms (i.e. ) could be expressed as a
n

r�1
104 � 4r.Sn

a
11

r�1
104 � 4r.

 � 104 � 4n
 un � 100 � 41n � 1 2

d � �4.a � 100

100 � 96 � 92 � ... � 60

Example

Consider the geometric series

Express the series using sigma notation.

This can be expressed as or a
n

r�1
2r�1.a

n

r�1
4 � 2r�1

4 � 8 � 16 � 32 � ... � n

Example

Express the sum using sigma notation.

The infinite sum can be expressed as a
q

r�1
16 � ¢1

4
≤r�1

16 � 4 � 1 �
1
4

� ...

16 � 4 � 1 �
1
4

� ...

There are results that we can use with sigma notation that help to simplify expressions.
These are presented here without proof but are proved in Chapter 18.
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Permutations and combinations
Factorial notation is used most commonly with counting methods known as permutations
and combinations.

Factorials can be used to determine the number of ways of arranging n objects.

Consider four people standing in a line: Anna, Julio, Mehmet and Shobana. How many
different orders can they stand in?

The different ways can be listed systematically:

Example

Simplify 

Using the same rationale as above,

n!
1n � 2 2 !

�
n � 1n � 1 2 � 1n � 2 2!

1n � 2 2 !
� n˛1n � 1 2

n!
1n � 2 2 !

Example

Simplify 
This can be factorised with a common factor of 
So 

 � 1n � 2 2! 1n2 � n � 1 2

 n! � 1n � 2 2 ! � 1n � 2 2! 3n˛1n � 1 2 � 1 4
1n � 2 2!

n! � 1n � 2 2!

A J M S
A J S M
A M J S
A M S J
A S M J
A S J M
J A M S
J A S M
J M A S
J M S A
J S A M
J S M A

M A J S
M A S J
M J A S
M J S A
M S A J
M S J A
S A J M
S A M J
S J A M
S J M A
S M A J
S M J A

1 Evaluate

a b c

2 Express each of these sums in sigma notation.
a

b

c 

3 Use the results for and to simplify these.

a b c d a
k�1

r�1
7r � 3a

2n

k�1
9 � k2

a
n

k�1
2k2 � k � 3a

n

r�1
6r � 2

a
n

r�1
r2

a
n

r�1
1, a

n

r�1
r

9 � 13 � 17 � 21 � p

�2 � 3 � 8 � 13 � p � 15n � 3 2

4 � 8 � 12 � 16 � 20

a
8

k�3
5k2 � 3ka

7

i�4
2i2a

5

r�1
3r � 2

Hence

 � 271

 � 288 � 18 � 35

 a
6

r�1
4r2 � 3r � 5 �

1
6

� 618 � 62 � 3 � 6 � 35 2

 �
1
6

 n18n2 � 3n � 35 2

 �
1
6

 n18n2 � 12n � 4 � 9n � 9 � 30 2

 �
1
6

 n 3 14n � 4 2 12n � 1 2 � 91n � 1 2 � 30 4

Exercise  6

6.7 Factorial notation
Sigma notation is a method used to simplify and shorten sums of numbers. There are
also ways to shorten multiplication, one of which is factorial notation.

A factorial is denoted with an exclamation mark ! and means the product of all the
positive integers up to that number.

n! � 1 � 2 � p � 1n � 1 2 � n

It is worth noting that 0! is
defined to be 1.

So 

It is important to be able to perform arithmetic with factorials, as demonstrated in the
examples below.

5! � 1 � 2 � 3 � 4 � 5 � 120.

Example

Simplify 

It should be obvious that so can be simplified to
8 � 7 � 6 � 5!

5!
� 8 � 7 � 6 � 336

8!
5!

8! � 8 � 7 � 6 � 5!

8!
5!

.

6  Sequences, Series and Binomial Theorem
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Many calculators have in-built formulae for permutations and combinations.

Pascal’s triangle revisited

Here is Pascal’s triangle.

Notice that this could also be written as

Row 1

Row 2

Row 3

Row 4

So Pascal’s triangle is also given by the possible combinations in each row n. This leads to
recognizing some important results about combinations.

Result 1

¢4
0
≤ ¢4

1
≤ ¢4

2
≤ ¢4

3
≤ ¢4

4
≤ etc.

¢3
0
≤ ¢3

1
≤ ¢3

2
≤ ¢3

3
≤

¢2
0
≤ ¢2

1
≤ ¢2

2
≤

¢1
0
≤ ¢1

1
≤

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Example

How many different hockey teams (11 players) can be chosen from a squad of
15? Here, the order in which the players are chosen is unimportant.

So the number of different teams is 15C11 �
15!

11! 115 � 11 2!
� 1365.

¢n
0
≤ � ¢n

n
≤ � 1

This is fairly obvious from the definition of 

¢n
n
≤ �

n!
n! 0!

�
n!
n!

� 1¢n
0
≤ �

n!
n! 0!

�
n!
n!

� 1

nCr.

There are clearly 24 possibilities. This comes as no surprise as this can be considered as
having 4 ways of choosing position 1, then for each choice having 3 ways of choosing
position 2, and for each choice 2 ways of choosing position 3, leaving only 1 choice for
position 4 each time.

This is equivalent to having possibilities.4 � 3 � 2 � 1

There are two notations for combinations, or ¢n
r
≤.nCr

The formula for the number of permutations when choosing r objects at random from n
objects is very similar:

So ¢n
r
≤ �

n!
r! 1n � r 2 !

nPr �
n!

1n � r 2 !

This makes it clear that the r! in the combinations formula removes the duplication of
combinations merely in a different order. This topic is further developed in Chapter 20 in
its application to probability.

It is important that we 
recognize whether we are
working with a permutation
or a combination, i.e. does
order matter?

Example

How many 5 letter words (arrangements of letters) can be made from the letters
of EIGHTYFOUR?

Here, the order of the letters matters so the number of words will be given by

10P5 �
10!
5!

� 30240

10P5.

So n! is the number of ways of arranging n objects in order.

Consider a bag with five balls in it, labelled A, B, C, D and E.

If two balls are chosen from the bag at random, there are 10 possible arrangements:

A&B A&C A&D A&E B&C B&D B&E C&D C&E D&E

If the order that the balls come out in matters, there would be 20 possible outcomes.

AB AC AD AE BC BD BE CD CE DE

BA CA DA EA CB DB EB DC EC ED

The first type are known as combinations (where order does not matter) and the
second type as permutations (where order is important).

The formula for the number of combinations when choosing r objects at random from n

objects is 
n!

r! 1n � r 2 !
.
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1 Evaluate the following:

a b c d e

2 How many different 4 letter words (arrangements where order matters) can
be made from the letters A, E, I, O, U, Y?

3 How many different committees of 9 can be made from 14 people?
4 A grade 5 class has 11 students.

a If the teacher lines them up, how many different orders can there be?
b If 3 students are selected as president, secretary and treasurer of the

Eco-Club, how many different ways can this be done?
c If 7 students are chosen for a mini-rugby match, how many different teams

are possible?
5 In the UK national lottery, 6 balls are chosen at random from 49 balls. In the

Viking lottery operated in Scandinavia, 6 balls are chosen from 48 balls.
How many more possible combinations result from the extra ball?

6 The EuroMillions game chooses 5 numbers at random from 50 balls and
then 2 more balls known as lucky stars from balls numbered 1–9. How
many possible combinations are there for the jackpot prize (5 numbers plus
2 lucky stars)?

7 José is choosing his 11 players for a soccer match. Of his squad of 20, one
player is suspended. He has three players whom he always picks (certainties).
How many possible teams can he create?

8 How many 3-digit numbers can be created from the digits 2, 3, 4, 5, 6 and
7 if each digit may be used
a any number of times b only once.

9 Solve these equations.

a b c d ¢2n
2
≤ � 66¢2n

2
≤ � 28¢n

3
≤ � 10¢n

2
≤ � 15

¢8
4
≤¢9

5
≤8C3

8P3
6P2

Example

Solve

From result 4

 1 n � 10
 1 1n � 13 2 1n � 10 2 � 0
 1 n2 � 3n � 130 � 0

 1 1n � 2 2 1n � 1 2 � 132

 1

1n � 2 2!

n! � 2
� 66

 1

1n � 2 2 !

1n � 2 � 2 2 ! 2!
� 66

 1 ¢n � 2
2
≤ � 66

¢n � 1
1
≤ � ¢n � 1

2
≤ � 66

Remember that n must be
positive.

Exercise  7

Result 2

¢n
1
≤ � ¢ n

n � 1
≤ � n

The above two results and the symmetry of Pascal’s triangle lead to result 3.

Result 3

¢ n
n � 1

≤ �
n!

1n � 1 2 ! 1!
�

n!
1n � 1 2!

� n¢n
1
≤ �

n!
1n � 1 2! 1!

�
n!

1n � 1 2 !
� n

¢n
r
≤ � ¢ n

n � r
≤

This is again easy to show:

Result 4

¢n
r
≤ �

n!
r! 1n � r 2 !

�
n!

3n � 1n � r 2 4! 1n � r 2 !
�

n!
1n � r 2! r!

� ¢ n
n � r

≤

¢ n
r � 1

≤ � ¢n
r
≤ � ¢n � 1

r
≤

This is the equivalent statement of saying that to obtain the next row of Pascal’s triangle,
add the two numbers above.

The proof of result 4 is as follows.

 � ¢n � 1
r
≤

 �
1n � 1 2!

r! 1n � r � 1 2 !

 �
r # n! � 1n � 1 2 # n! � r # n!

r! 1n � r � 1 2 !

 �
r # n!

r! 1n � r � 1 2 !
�
1n � r � 1 2 # n!

r! 1n � r � 1 2!

 �
n!

1r � 1 2! 1n � r � 1 2!
�

n!
r! 1n � r 2 !

¢ n
r � 1

≤ � ¢n
r
≤
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Example

Using the result for find the expansion of 

Using the result for this becomes

 � 4 � 12x �
27
2

 x2 �
27
4

 x3 �
81
64

 x4

 � 4¢1 � 3x �
27
8

 x2 �
27
16

 x3 �
81
256

 x4≤
4B1 � 4¢3

4
 x≤ �

4 � 3
2!
¢3
4

 x≤2

�
4 � 3 � 2

3!
¢3
4

 x≤3

�
4 � 3 � 2 � 1

4!
¢3
4

 x≤4R
11 � x 2n,

14 � 3x 24 � 4¢1 �
3
4

 x≤4

14 � 3x 24.11 � x 2n,

Example

Expand 

This can be rewritten as 

Before expanding, it is often useful to simplify this further.

So 

Expanding gives

 � x3 � 12x � 48x�1 � 64x�3

 ¢x �
4
x
≤3

� x3 � ¢3
1
≤411�1 21˛x1 � ¢3

2
≤421�1 22˛x�1 � 431�1 23˛x�3

 � a
3

r�0
¢3

r
≤4r1�1 2 r˛x3�2r

 a
3

r�0
¢3

r
≤x3�r1�1 2 r¢4

x
≤r

� a
3

r�0
¢3

r
≤x3�r4r1�1 2 r˛x�r

a
3

r�0
¢3

r
≤x3�r1�1 2 r¢4

x
≤r

.

¢x �
4
x
≤3

.

Example

What is the coefficient of in the expansion of 

Rewriting using sigma notation,

For the term, it is clear that 

Hence the term required is 

So the coefficient is 

� �
108 864

125

56 � 243 � 1�1 2 �
8

125

¢8
3
≤351�1 23¢2

5
≤3

˛x2.

1 r � 3
8 � 2r � 2x2

 � a
8

r�0
¢8

r
≤38�r1�1 2 r¢2

5
≤r

˛x8�2r

 ¢3x �
2
5x
≤8

� a
8

r�0
¢8

r
≤38�r

˛x8�r1�1 2 r¢2
5
≤r

1x�1 2 r

¢3x �
2
5x
≤8

?x2

10 Solve these equations.

a b c

11 Find a value of n that satisfies each equation.

a b c ¢2n
3
≤ � ¢2n

4
≤ � 35¢n � 2

2
≤ � ¢n � 2

3
≤ � 20¢n

1
≤ � ¢n

2
≤ � 28

¢ n
n � 3

≤ � 84¢ n
n � 2

≤ � 45¢ n
n � 2

≤ � 6

6.8 Binomial theorem
The binomial theorem is a result that provides the expansion of 

Consider the expansions of and 

Notice that the coefficients are the same as the numbers in Pascal’s triangle.

Similarly, 

From Pascal’s triangle, this could be rewritten

This leads to the general expansion

This can be shortened to

1x � y 2n � ¢n
0
≤ xn � ¢n

1
≤ xn�1

˛y � ¢n
2
≤ xn�2

˛y2 � p � ¢ n
n � 1

≤ xyn�1 � ¢n
n
≤ yn

1x � y 24 � ¢4
0
≤ x4 � ¢4

1
≤ x3

˛y � ¢4
2
≤ x2

˛y2 � ¢4
3
≤ xy3 � ¢4

4
≤ y4

1x � y 24 � 1x4 � 4x3
˛y � 6x2

˛y2 � 4xy3 � 1y4

 � 1x3 � 3x2
˛y � 3xy2 � 1y3

 1x � y 21 �1x � 1y  1x � y 22 �1x2 � 2xy � 1y2 1x � y 23 � 1x � y 2 1x2 � 2xy � y2 2

1x � y 23.1x � y 21, 1x � y 22
1x � y 2n.

1x � y 2n � a
n

r�0
¢n

r
≤xn�r

˛y r

This result is stated here without proof; the proof is presented in Chapter 18.

A useful special case is the expansion of 11 � x 2n

11 � x 2n � 1 � nx �
n˛1n � 1 2

2!
 x2 �

n˛1n � 1 2 1n � 2 2

3!
 x3 � ...

Example

Using the binomial theorem, expand 

This can be written 

So

 � 32x5 � 240x4 � 720x3 � 1080x2 � 810x � 243

 � 5 � 2 � 81x � 243
 � 32x5 � 5 � 16 � 3x4 � 10 � 8 � 9x3 � 10 � 4 � 27x2

 12x � 3 25 � ¢5
0
≤25

˛x530 � ¢5
1
≤24

˛x431� ¢5
2
≤23

˛x332� ¢5
3
≤22

˛x233�¢5
4
≤21x̨134�¢5

5
≤20

˛x035

12x � 3 25 � a
5

r�0
¢5

r
≤12x 25�r3r

12x � 3 25.
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1 Use the binomial theorem to expand the following expressions.

a b c d
2 Expand the following using the binomial theorem.

a b c d 

3 Expand by considering it as 
4 What is the coefficient of:

a in the expansion of 

b in the expansion of 

c in the expansion of 

d in the expansion of 

e x in the expansion of 

f in the expansion of 

g in the expansion of 

h the term independent of x in the expansion of 

5 What is the coefficient of:

a in the expansion of 

b in the expansion of 1x � 2 241x � 4 26x6

1x � 1 2512x � 1 24x3

¢2x �
3
x
≤8

.

¢x �
2
x
≤4

x2

¢x �
1
x
≤7

x3

18 � x 29
12x � 9 25x3

1x � 4 26x2

1x � 5 28x5

1x � 2 25x3

1 31 � 3x 4 � x2 23.11 � 3x � x2 23

¢2t �
1
4t
≤4¢x �

1
x
≤6¢x �

2
x
≤5¢x �

1
x
≤3

12p � 3q 2511 � x 2413x � 2 261a � b 24

So the three scenarios that give terms independent of x when the brackets are
multiplied are:

So the term independent of x in the expansion is 
 � �11 648
 �35 840 � 26 880 � 2688

 � �2688 � 26 880 � �35 840
 � �1 � 32 � 1 � 4 � �1 � 8

 � 21 � 4 � 1 � 21 � 32 � 10 � 7 � 64 � 10

¢7
5
≤22 � ¢5

5
≤1�1 2525¢7

2
≤25 � ¢5

2
≤1�1 2222¢7

1
≤26 � ¢5

3
≤1�1 2323

k � 5, r � 5k � 4, r � 2k � 3, r � 1

Example

Expand and hence find 

So can be considered to be when in the above expansion.

So

 � 24.76099
 � 32 � 8 � 0.8 � 0.04 � 0.001 � 0.00001

 1.95 � 32 � 801�0.1 2 � 801�0.1 22 � 401�0.1 23 � 1010.1 24 � 1�0.1 25
x � �0.11.95

12 � x 25 � 32 � 80x � 80x2 � 40x3 � 10x4 � x5

1.95.12 � x 25

Exercise  8

This method of finding the required term is very useful, and avoids expanding large
expressions.

Example

Find the term independent of x in the expansion of 

For this to produce a term independent of x, the expansion of 

must have a constant term or a term in 

So the power of x is given by This cannot be zero for positive integer
values of r. Hence the required coefficient is given by

The required term is therefore given by 
So the term independent of x is 40.

12 � x 2 1 p � 10 � 22 � x�1 � ... 2 .

1 r � 3
5 � 2r � �1

5 � 2r.

¢2x �
1
x
≤5

� a
5

r�0
25�r

˛x5�r1x�1 2 r

x�1.

¢2x �
1
x
≤5

12 � x 2¢2x �
1
x
≤5

.

Example

Find the term independent of x in the expansion of 

This is the product of two expansions, which need to be considered separately
at first.

So the general terms are and 

For the term independent in x, that is the general terms need to multiply

together to make 

So 

This type of equation is often best solved using a tabular method (there is
often more than one solution).

 1 2k � r � 5
 1 r � 5 � 2k � 0
xr # x5�2k � x0

x0.

x0,

¢5
k
≤1�1 2 k2k

˛x5�2k.¢7
r
≤27�r

˛xr

12x � 1 27 � a
7

r�0
¢7

r
≤27�r

˛x7�r1r and ¢x �
2
x
≤5

� a
5

k�0
¢5
k
≤x5�k1�1 2 k2k

˛x�k

12x � 1 27¢x �
2
x
≤5

.

k 2k r

0 0 5 0

1 2 6 1

2 4 7 2

3 6 8 3

4 8 9 4

5 10 10 5

11 6

12 7

r � 5
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6 Consider the infinite geometric series

a  For what values of x does the series converge?

b Find the sum of the series if  [IB Nov 01 P1 Q4]

7 An arithmetic sequence has 5 and 13 as its first two terms respectively.
a  Write down, in terms of n, an expression for the nth term, 
b  Find the number of terms of the sequence which are less than 400.

[IB Nov 99 P1 Q1]

8 The coefficient of x in the expansion of is Find the possible 
values of a.

[IB Nov 00 P1 Q12]

9 The sum of an infinite geometric sequence is and the sum of the first 

three terms is 13. Find the first term. [IB Nov 00 P1 Q15]

10 a are the first three terms of an arithmetic 
sequence. For what value of n does the sum of the first n terms, first
exceed 100?

b The sum of the first three terms of a positive geometric sequence is 315
and the sum of the 5th, 6th and 7th terms is 80 640. Identify the first term
and the common ratio.

11 The first four terms of an arithmetic sequence are 
and where a and b are constants. Find a and b. [IB Nov 03 P1 Q9]

12 a Find the expansion of giving your answer in ascending powers
of x.

b By letting or otherwise, find the exact value of 

[IB Nov 04 P1 Q8]
13 The first three terms of a geometric sequence are also the first, eleventh and

sixteenth terms of an arithmetic sequence.
The terms of the geometric sequence are all different.
The sum to infinity of the geometric sequence is 18.
a  Find the common ratio of the geometric sequence, clearly showing all

working.
b  Find the common difference of the arithmetic sequence.

[IB May 05 P2 Q4]
14 a An arithmetic progression is such that the sum of the first 8 terms is 424,

and the sum of the first 10 terms is 650. Find the fifth term.
b A 28.5 m length of rope is cut into pieces whose lengths are in arithmetic

progression with a common difference of d m. Given that the lengths of
the shortest and longest pieces are 1 m and 3.75 m respectively, find the
number of pieces and the value of d.

c The second and fourth terms of a geometric progression are 24 and 3.84
respectively. Given that all terms are positive, find
i the sum, to the nearest whole number, of the first 5 terms
ii the sum to infinity.

15 Determine the coefficients of and in the expansion ¢2x �
1
x
≤7

.
1
x3

1
x

2.015.x � 0.01

12 � x 25,

a � 3b,
2, a � b, 2a � b � 7

Sn,
x � 1, 3x � 1, 6x � 2

13 

1
2

,

7
3

.¢x �
1

ax2≤
7

an.

x � 1.2.

1 � ¢2x
3
≤ � ¢2x

3
≤2

� ¢2x
3
≤3

� ...

c x in the expansion of 

d in the expansion of 
6 Expand these expressions.

a b c

7 What is the coefficient of:

a x in the expansion of 

b in the expansion of 

c in the expansion of 

8 Find the term independent of p in the expansion of 

9 Calculate the following correct to three significant figures.

a b c

10 For small values of x, any terms with powers higher than 3 are negligible for the 

expression 

Find the approximate expression, for this expansion.

11 In the expansions and the constant terms are equal. 

Show that this is never true for p, q H �, p, q � 0.

¢px2 �
q
x
≤4

,¢px �
q
x
≤6

ax2 � bx � c,

1x2 � x � 5 221x � 2 27.

7.9480.871.014

¢2p2 �
1
p
≤5¢p �

2
p
≤4

.

¢x �
1
x
≤7¢x �

4
x
≤5

.x�10

12x � 3 25¢x �
1
x
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x3

1x � 1 24 ¢x �
1
x
≤3

¢x �
1
x
≤4¢x �

2
x
≤3¢x �

1
x
≤3

1x � 2 231x � 5 231x � 4 24

1x2 � x � 3 24.x2

13 � x 2311 � 2x 25

Review exercise

1 Find the coefficient of in the binomial expansion of 

[IB Nov 02 P1 Q3]

2 The nth term of a geometric sequence is given by 
a Find the common ratio r.

b Hence, or otherwise, find the sum of the first n terms of this sequence.

[IB May 01 P1 Q7]

3 Consider the arithmetic series 
a Find an expression for the sum of the first n terms.

b Find the value of n for which [IB May 02 P1 Q1]
4 A geometric sequence has all positive terms. The sum of the first two terms is

15 and the sum to infinity is 27. Find the value of
a  the common ratio
b the first term. [IB May 03 P1 Q1]

5 The sum of the first n terms of a series is given by where

a  Find the first three terms of the series.
b Find an expression for the nth term of the series, giving your answer in

terms of n. [IB Nov 04 P1 Q3]

n H ��.

Sn � 2n2 � n,
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16 The constant in the expansions of and are equal,

and k and p are both greater than zero. Express k in terms of p.

17 Find the constant term in the expansion of giving your answer

as an integer.

18 What is the coefficient of in the expansion of 

19 Simplify and hence find 

20 Solve ¢n � 1
n � 2

≤ � 165.
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